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Question 1.

(a) Consider the following matrix:


0 1 2 0 1
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0


Is this matrix

i) in row echelon form?

ii) in reduced row echelon form?

iii) symmetric?

iv) an element of R5×4?

Answer with yes or no.

[4]

(b) Consider the linear system

x1 − 2x2 − x3 + x4 = 1
−x1 + x2 + x4 = 2
2x1 − 2x2 − x4 = −4

(i) Write down the augmented matrix of the system.

(ii) Bring the augmented matrix to row echelon form. Indicate which
elementary row operation you use at each step.

(iii) Identify the leading and the free variables, and write down the solution
set of the system.

[8]

Question 2.

(a) Let

A =

(
0 −1 2
−3 2 1

)
, B =

(
1 3
−2 0

)
.

For each of the products A2, AB, BA, B2, state whether or not it exists; if it
exists then evaluate it. [4]

(b) Explain what it means for a matrix M to be invertible and what is meant by
the inverse of M . [4]

(c) Show that if M and N are invertible matrices of the same size then MN is
invertible and

(MN)−1 = N−1M−1 .

[4]
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Question 3. Consider the least squares problem Ax = b, where

A =

 1 1
−1 1
2 1

 , b =

4
1
2

 .

Write down the corresponding normal equations and determine the set of least
squares solutions. [7]

Question 4. Let

A =


2 0 5 0
1 0 3 0
−7 2 9 6
8 0 4 1

 , b =


1
2
−5
9

 .

(a) Calculate det(A). [3]

(b) Using (a) deduce that the system Ax = b where x = (x1, x2, x3, x4)
T is

consistent and determine x3 using Cramer’s rule. [4]

(c) Let B and C belong to R7×7. Suppose that det(B2C) = −27 and that B is
obtained from C be adding 3 times column 2 to column 1. Find det(B) and
det(C). [5]

Question 5. Let H =
{
A ∈ R2×2

∣∣ AT = A
}

.

(a) Explain what is meant by a subspace of a vector space. [4]

(b) Show that H is a subspace of R2×2. [4]

(c) Explain what is meant by a basis for a vector space. [4]

(d) Find a basis of H and determine dimH. [4]

Question 6.

(a) Given a matrix A ∈ Rm×n, briefly explain what is

i) row(A)

ii) col(A)

iii) the nullspace N(A)

iv) rankA

v) nulA [5]

(b) State the Rank-Nullity Theorem. [2]

(c) Let

A =

 1 −1 3 1 2
4 −4 12 6 0
−3 3 −9 −4 −2

 .

By bringing the matrix A into row echelon form, find bases for row(A),
col(A) and N(A). Determine the rank and nullity of A, and verify that the
Rank-Nullity Theorem holds for the above matrix A. [6]
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Question 7. Consider the following vectors in R4

x1 =


1
0
0
1

 , x2 =


2
0
1
0

 , x3 =


0
1
−3
0

 , y =


1
−7
−2
5

 ,

and let H = Span (x1,x2,x3).

(a) Show that the vectors x1,x2,x3 are linearly independent. [4]

(b) Use the Gram Schmidt process to determine an orthogonal basis of H. [4]

(c) Using (b) determine the vector in H that is closest to y. [4]

Question 8. Let

A =

0 1 0
0 −2 1
0 −2 1

 .

(a) Explain what is meant by an eigenvalue and an eigenvector of a matrix. [4]

(b) Find the characteristic polynomial of A and factorise it. [4]

(c) Determine all eigenvalues of A and find bases for the corresponding
eigenspaces. [4]

(d) Is A diagonalisable? Give reasons for your answer. [4]

End of Paper.
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