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Question 1

(a) For each of the following matrices state whether or not it is in row echelon
form. Also state whether or not it is in reduced row echelon form.

(i)

0 1 −1 0 1
0 0 1 0 2
0 0 0 0 0

 , (ii)

1 0 −1 0 1
0 −1 1 0 2
0 0 0 1 1

 .

[4]

(b) Compute the determinant of the matrix 1 −1 1
2 0 1
−1 2 −2

 .

Is this matrix invertible? If so, find its inverse; if not, prove it. [6]

(c) Hence or otherwise solve the linear system

x1 − x2 + x3 = 1
2x1 + x3 = 2
−x1 + 2x2 − 2x3 = −3

(Show your working in full.) [4]

Question 2

(a) Let

A =

(
0 3
−1 2

)
, B =

−1 2
0 3
1 −2

 .

For each of the products A2, AB, BA, B2, state whether or not it exists; if it
exists then evaluate it. [4]

(b) Suppose that B is a square matrix and B2 = O. Prove that I+B is invertible,
and find its inverse. [4]
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Question 3 For each of the following statements about n×nmatricesA andB, state
whether it is true or false, and provide a proof or counterexample as appropriate.

(a) det(A+B) = detA+ detB; [4]

(b) det(A+BT ) = det(B +AT ); [4]

(c) det(BA) = det(AB); [4]

(d) det(λA) = λ detA, where λ ∈ R. [4]

Question 4

(a) Let V be a vector space, and let S = {v1, . . . , vk} be a set of k distinct non-zero
vectors in V . Explain what is meant by the statement that S is a spanning set
for V . Explain what is meant by the statement that S is a linearly dependent
set. [6]

(b) Let V = R4, and let

S = {(0, 2, 1,−3)T , (1, 1, 1, 2)T , (3, 0,−1,−1)T , (−1, 4, 4, 2)T }.

Either determine whether or not S is a spanning set for V ,

or determine whether or not S is a linearly dependent set. [4]

Question 5
Let P2 denote the set of polynomials of degree at most 2, that is

P2 = {p | p(x) = a2x
2 + a1x+ a0 for some a0, a1, a2 ∈ R}.

Let D : P2 → P2 be the mapping given by D(p) = q, where p′ denotes the derivative
of p, and

q(x) = x2p(0) + p′(x).

(a) Show that D is a linear transformation. [4]

(b) Is D surjective? Justify your answer. [4]

(c) Is D injective? Justify your answer. [4]
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Question 6

(a) Let x and y be vectors in Rn. Define the scalar product (or dot product) x.y. [2]

(b) Let H be a subspace of Rn. Define the orthogonal complement H⊥ of H. [2]

(c) Explain why dimH + dimH⊥ = n. [4]

(d) Suppose n = 4 and

H = {(x, y, z, t)T | x+ 2y − 3z = 0, 3y + 2z − t = 0}.

Compute dimH, dimH⊥, and a basis for H⊥. [6]

Question 7
Consider the following vectors in R4:

u1 =


1
0
0
1

 , u2 =


0
1
0
−2

 , u3 =


−1
4
1
−3

 .

Let H = Span (u1,u2,u3).

(a) Apply the Gram–Schmidt process to the vectors u1,u2,u3 to obtain an ortho-
gonal basis for H. [6]

(b) Let y = (2, 0, 3,−1)T . Express y as the sum of a vector in H and a vector in
H⊥, and hence find the closest point to y in H. [6]

Question 8 Let

A =

−1 0 1
2 3 2
2 4 0

 , v1 =

−2
1
0

 , v2 =

 1
0
−1

 .

(a) Show that v1 and v2 are eigenvectors of A and find the corresponding eigen-
values. [4]

(b) Find the characteristic polynomial of A. [4]

(c) Determine all eigenvalues of A and find bases for the corresponding eigenspaces. [4]

(d) Find an invertible matrix P and a diagonal matrix D such that P−1AP = D. [2]

End of Paper
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