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The following convention is used in this paper. If Y (t) is a random process then Yt may
be used to describe the same process; a similar convention applies to any other random
process. In particular, both W (t) and Wt denote the standard Wiener process.

Question 1. [15 marks] Suppose that Yt is a Brownian motion.

(a) State the definition of a Wiener process. [6]

(b) State the definition of a Brownian motion with parameters µ and σ. [3]

(c) Prove that if Yt, t > 0, is the Brownian motion with the drift parameter µ and
volatility parameter σ then Cov(Yt, Ys) = σ2 min(s, t).

Remark. You may use without proof the equality Cov(Wt,Ws) = min(s, t). [6]

Question 2. [18 marks] You are reminded that within the framework of the
Black-Scholes model the price of a European call option with the strike price K and
expiration time T is given by

C(S,K, σ, r, T ) = SΦ(ω)−Ke−rTΦ(ω − σ
√
T ) , (1)

where

Φ(x) :=
1√
2π

∫ x

−∞
e−t

2/2 dt and ω =
log S

K
+ rT

σ
√
T

+
1

2
σ
√
T .

(a) State the definitions of a European call option with strike price K and expiration
time T and of a European put option with strike price K and expiration time T. [4]

(b) Explain the meaning of the parameters S and r in (1). [3]

(c) Let C be the price of a European call option and P be the price of a European
put option on the same underlying share. Suppose that these options have the
same strike price K and the same expiry time T . The continuously compounded
interest rate is r. State the call-put parity formula. [3]

(d) Prove that the no-arbitrage price of a European put option with the strike
price K and expiry time T is given by the following formula:

P = Ke−rTΦ(σ
√
T − ω)− SΦ(−ω).

Hints: Use (1), the call-put parity formula, and the fact that Φ(−x) = 1− Φ(x). [8]
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Question 3. [14 marks] Consider the Black-Scholes model. Let S(t) be the price of
a share at time t > 0 which is driven by a geometric Brownian motion with parameters
S, µ, σ, that is S(t) = Seµt+σW (t). Let r be the continuously compounded interest rate.

(a) Suppose that a derivative has a return function R(S(T )) (that is, the sum of
£R(S(T )) is paid to the owner of the derivative at time T ). State the theorem
which allows one to compute the no-arbitrage price of this derivative. [4]

(b) Compute the no-arbitrage price of a derivative with R(S(T )) =
√
S(T ).

Remark The fact that E
(
eaW (t)

)
= e

a2t
2 , where a is any real number may be used

without proof. [10]

Question 4. [5 marks] What is the definition of implied volatility? [5]

Question 5. [19 marks] Denote by S(t) the price of a share at time t, 0 6 t 6 T .
Suppose that you have an American call option on this share with strike price K and
expiration time T . The interest rate (compounded continuously) is r > 0. No dividends
are paid.

(a) Explain the difference between a European call option and an American call
option. [3]

(b) Explain what it means to short-sell a share. [3]

(c) Suppose that S(0) > K. Consider the following two strategies.

Strategy 1. Exercise the call option at time t = 0 and deposit S(0)−K that you
gain in a bank.

Strategy 2. Do two things: first, short-sell the share and deposit S(0) in a bank;
second, keep the call option until the expiration time T .

(i) Prove that the second strategy is at least as good as the first one (no matter
what the price S(T ) is). [10]

(ii) Given that no dividend is paid and the interest rate r > 0, is it ever optimal
to exercise an American call option before the expiration time? [3]
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Question 6. [8 marks]

(a) Use Ito’s lemma to show that d(W 2
t ) = 2WtdWt + dt. [4]

(b) Show that
∫ t
0
Ws dWs = 1

2
W 2
t − t

2
.

Hint Use the relation stated in (a) or any other method you may know. [4]

Question 7. [21 marks] Consider the Vasicek model according to which the interest
rate r(t) is governed by the stochastic differential equation

dr(t) = −a(r(t)− b)dt+ σdWt with r(0) = r0,

where Wt is the Wiener process, and a > 0, b > 0 are constants. Define a new function
U(t) = eat (r(t)− b).

(a) Compute the differential dU(t) and thus prove that

dU(t) = σeatdWt. (2)

Hint Apply the chain rule to obtain this result. [8]

(b) Use (2) to compute U(t) and prove that

r(t) = b+ (r0 − b)e−at + σe−at
∫ t

0

easdWs. [7]

(c) State the distribution of r(t) and compute its parameters in the case when
a = 0.5, b = r0 = 0.03, σ = 0.01, and t = 1. [6]

End of Paper.
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