Main Examination period 2023 - January - Semester A

MTH6154 / MTH6154P: Financial Mathematics I

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

For actuarial students only: This module also counts towards IFoA exemptions. For your submission to be eligible, you must submit within the first 3 hours.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: Dr. D. Stark, Dr. J. Griffin

Question 1 [23 marks].

(a) Suppose you put $£ 1500$ in a bank account with nominal interest rate 1.2% and make no withdrawals. How much money will be in the account 6 years later if the interest is compounded monthly? State your answer to the nearest pence.
(b) Suppose a bank account has a nominal interest rate of 4.4% compounded semi-annually. Find the effective interest rate $r_{\text {eff }}$ to three significant figures.
(c) Suppose that for time $t \geq 0$ the instantaneous interest rate of a bank account is given by

$$
\begin{equation*}
r(t)=0.016+0.01 t e^{-t^{2}} \tag{4}
\end{equation*}
$$

(i) Determine the yield curve $\bar{r}(t)$.
(ii) Determine $\lim _{t \rightarrow \infty} \bar{r}(t)$.
(d) Suppose that Bank A offers deposits and loans continuously compounded with discount factor $D_{A}(t)$ and that Bank B offers deposits and loans continuously compounded with discount factor $D_{B}(t)$. Moreover, suppose that

$$
D_{A}(1) D_{A}(2)>D_{B}(3)
$$

Show that an arbitrage opportunity exists.

Question 2 [8 marks]. Consider the cash flow $\left(a_{1}, a_{2}, a_{3}\right)=(-2,1,-1)$, where a_{i} is the payment at the beginning of year i for $i=0,1,2$.
(a) Show that this cash flow does not have an Internal Rate of Return.
(b) Why is this cash flow not subject to the theorem proved in lectures about the existence of an Internal Rate of Return r satisfying $-1<r<\infty$.

Question 3 [9 marks]. A 2-year bond has face value $£ 700,000$ semi-annual coupons at rate 3% per annum, and is redeemable at half par. The current rate of interest is 3% compounded continuously.
(a) Determine the coupon and redemption payments in pounds.
(b) Determine the no-arbitrage price of the bond to the nearest pound.

Question 4 [10 marks]. Consider the three cash flow streams of the form $\left(a_{1}, a_{2}, a_{3}\right)$ where a_{i} is the amount of money in thousands of pounds received at the end of year i for $i=0,1,2$:

$$
\begin{aligned}
& \mathbf{x}=(2,2,2) \\
& \mathbf{y}=(a, 2,2) \\
& \mathbf{z}=(2,2, a),
\end{aligned}
$$

where $a>2$. Interest is 3% compounded continuously. Order \mathbf{x}, \mathbf{y}, and \mathbf{z} from smallest effective duration to largest effective duration. Justify your answer.

Question 5 [14 marks]. Suppose that in the fixed interest rate model the interest rate compounded yearly has the continuous distribution $R \sim$ Uniform(1.3\%,2.7\%).
(a) Determine the probability that $£ 200$ accumulates to less than $£ 210$ after three years? State your answer as a decimal to three significant figures.
(b) Find the expected present value of a payment of $£ 10,000$ received five years from now. State your answer to the nearest pound.
(c) Find the present value of a payment of $£ 10,000$ received five years from now if interest is not random any more, but is compounded yearly at rate $\mathbb{E}(R)$, where \mathbb{E} denotes expected value. State your answer to the nearest pound.

Question 6 [8 marks].

(a) Assume that Corner Bank quotes spot rate rate $s_{8}=1.5 \%$ and forward rate $f_{8,10}=1.9 \%$. Find the spot rate s_{10}. State your answer as a percentage to three significant figures.
(b) Suppose that the price of 1006 -year zero-coupon bonds each paying $£ 1$ is $£ 96$ and that the price of 1208 -year zero-coupon bonds each paying $£ 1$ is $£ 105$. Assuming there is no-arbitrage, find the forward rate $f_{6,8}$. State your answer as a percentage to three significant figures.

Question 7 [8 marks].

A company issues new shares to fund a new manufacturing plant. Explain the meaning of the Arbitrage Theorem with respect to the price of the new shares.

Question 8 [20 marks]. A share price is modelled via a two-period binomial model with initial stock price $S=250$, up/down multiplication factors $u=1.2$ and $d=0.8$, and interest rate 3.2% compounded continuously.
(a) Verify that the no-arbitrage assumption is valid in this model.
(b) Find the risk-neutral probabilities of up and down movements in the share price. State your answers to three significant figures.
(c) Find the no-arbitrage price of a European call option on the share with strike $K=200$ and expiry date $T=2$. State your answer to the nearest pence.
(d) Suppose that we let the strike price K vary and keep the other parameters the same. What is the smallest value of K for which the call would has value zero? Explain your answer.

End of Paper.

