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Throughout we only consider partial differential equations in two independent vari-
ables (x, y) or (x, t).

Question 1 [18 marks].

(a) Write the most general linear first order partial differential equation in two
variables (x, y). [4]

(b) Give the order of the following partial differential equations. Also, state
whether the equations are linear or non-linear and homogeneous or
inhomogeneous:

(i) Uxy + Uyyy − cos y U2
y = sin x,

(ii) Ux + tan2(x2 − y2)Uyy + 4 = 0,

(iii) sin U + Uy −Ux = 0.

[3]

(c) Using the method of characteristics, or otherwise, find the general solution to

Uy + 5Ux = 0.

[4]

(d) Using the method of characteristics, or otherwise, find the general solution to

y2Uy − x2Ux = 0,

under the condition

U(x, 1) = sin
(

1 +
1
x

)
.

[7]
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Question 2 [14 marks].

(a) Classify, according to type (hyperbolic, elliptic, parabolic) the following
equations:

(i) 3Uxx + 4Uxy − 8Uyy = 0. [2]

(ii) Uxx − 5Uxy + 6Uy − 7Ux = 0. [2]

(b) Find the general solution U(x, y) to the second order partial differential
equation

5Uxy = 0.

[5]

(c) Solve the following partial differential equation

5Ux −Uxy = 0.

[5]
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Question 3 [20 marks].

(a) D’Alembert’s formula for the solution of the wave equation on R is given by

U(x, t) =
1
2
(

f (x + ct) + f (x− ct)
)
+

1
2c

∫ x+ct

x−ct
g(s)ds.

Provide a brief discussion of the meaning of the two terms in the right-hand
side of the above formula. [4]

(b) Show by direct computation that D’Alembert’s formula is a solution to the
problem

Utt − c2Uxx = 0, x ∈ R, t > 0,
U(x, 0) = f (x),
Ut(x, 0) = g(x).

[6]

(c) Find the solution to the problem

Utt − c2Uxx = 0, x ∈ R, t > 0,
U(x, 0) = 0,
Ut(x, 0) = cos x.

[6]

(d) What is the main difference between the wave equation and the heat equation
in terms of the speed of propagation of information? [4]
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Question 4 [28 marks]. Throughout this question, consider the following problem
for the Laplace equation on a rectangle Ω ⊂ R2, Ω = {0 < x < a, 0 < y < b}

Uxx + Uyy = 0, (x, y) ∈ Ω
U(x, 0) = 0, U(x, b) = 0
U(0, y) = g(y), U(a, y) = 0.

(a) Following the method of separation of variables consider solutions of the form

U(x, y) = X(x)Y(y),

where X and Y are functions of a single argument. Show that X and Y satisfy
the ordinary differential equations

X′′ = kX
Y′′ = −kY

for some constant k. Moreover, show that Y(0) = Y(b) = X(a) = 0. [6]

(b) Show that the constant k obtained in (a) must be positive if Y(y) is not
identically 0 for y ∈ [0, b]. [6]

(c) Find the general solution to the ordinary differential equations in (a).

[4]

(d) Use the conditions Y(0) = Y(b) = 0 to determine the value of the constant k
and show that the solutions Y obtained in (c) must be of the form

Y(y) = sin
(nπy

b

)
, n = 1, 2, 3, . . .

Moreover, show that if X(a) = 0, then

X(x) = sinh
(

nπ(x− a)
b

)
, n = 1, 2, 3, . . .

[4]

(e) Use the Principle of Superposition to find the general solution to the Laplace
equation on the rectangle Ω with the prescribed boundary conditions. [4]

(f) Briefly explain how would you solve the general problem

Uxx + Uyy = 0, (x, y) ∈ Ω
U(x, 0) = f1(x), U(x, b) = f2(x)
U(0, y) = g1(y), U(a, y) = g2(y).

You may use a diagram to explain your idea. [4]
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Question 5 [20 marks].

(a) Explain in a few words what is the heat kernel and what its relevance in the
study of the heat equation. [4]

(b) Use the Fourier-Poisson formula

U(x, t) =
∫ ∞

−∞

1√
4πκt

e−(x−y)2/(4κt) f (y)dy

to compute the solution to the problem

Ut = κUxx (x, y) ∈ R, t > 0,

U(x, 0) =

{
1 x < 0
17 x ≥ 0

Evaluate the limit of the solution when t→ +∞. [10]

(c) What is the main difference one encounters when solving the heat equation on
an interval by means of the method of separation of variables compared to the
same procedure for the wave equation? What is the consequence of this
difference in the behavior of the solutions to the two equations?

[6]

End of Paper – An appendix of 1 page follows.
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The Laplacian in polar coordinates
The expression for the Laplacian for a function U on R2 in standard spherical
coordinates (r, θ) is given by

∆U =
∂2U
∂r2 +

1
r

∂U
∂r

+
1
r2

∂2U
∂U2 .

Orthogonality properties of the sine function

∫ L

0
sin
(

nπx
L

)
sin
(

mπx
L

)
dx =

{
L/2 for n = m

0 for n 6= m .

Gaussian integral

∫ ∞

0
e−s2

ds =
√

π

2
.

D’Alembert’s formula

U(x, t) =
1
2
(

f (x + ct) + f (x− ct)
)
+

1
2c

∫ x+ct

x−ct
g(s)ds,

where
U(x, 0) = f (x), Ut(x, 0) = g(x).

The Fourier-Poisson formula

U(x, t) =
∫ ∞

−∞

e−(x−y)2/4κt
√

4κπt
f (y)dy.

End of Appendix.
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