
Main Examination period 2022/23

MTH6150: Numerical Computing in C and C++

Assignment date: Friday 7/4/2023
Submission deadline: Friday 12/5/2023 at 23:59 BST

The coursework is due by Friday, 12th May 2021 at 23:59 BST. Please submit a report (in
pdf format) containing answers to all questions, complete with written explanations and
printed tables or figures. Tables should contain a label for each column. Figures must contain
a title, axis labels and legend. Please provide a brief explanation of any original algorithm
used in the solution of the questions (if not discussed in lectures). Code comments should be
used to briefly explain what your code is doing. You need to show that your program works
using suitable examples. Build and run your code with any of the free IDEs discussed in class
(such as CLion, Visual Studio, Xcode or an online compiler). The code produced to answer
each question should be submitted aside with the pdf report, in a single cpp file, or multiple
cpp files. The code for each question should also be copied into your report, so that it
can be commented on when grading. Please include your name and student number on the
first page of your report. Only material submitted through QMPlus will be accepted. Late
submissions will be treated in accordance with current College regulations. Plagiarism is an
assessment offence and carries severe penalties.

1

Coursework [100 marks]

Question 1. [20 marks] Self-consistent iteration.
Using a pocket calculator, one may notice that by applying the cosine key repeatedly to the
value (in radians) one obtains a sequence of real numbers

x1 = cosx0 = 1.

x2 = cosx1 = 0.54030230586814

x3 = cosx2 = 0.54030230586814

x4 = cosx3 = 0.857553215846393

...
x21 = cosx20 = 0.739184399771494

...

which tends to the value x∞ = 0.739085 . . ., which is the point where the graphs of the
function x and cosx intersect. The iteration can be written as

xn+1 = cosxn for n = 0, 1, 2, . . . with x0 = 1.

The limit x∞ satisfies the transcendental equation

cosx = x.

Write a for loop that performs the iteration xn+1 = cosxn starting from the initial condition
x0 = 0 and stops when the absolute value of the difference |xn+1 − xn| between two
consecutive iterations is less than a prescribed tolerance ϵ = 10−12. Use an If/Break
statement to exit the loop when the condition is met. Print out the final value xn+1 to 16 digits
of accuracy. In how many iterations did your loop converge? What is the final error in the
above transcedental equation? (Hint: use the final value to compute and print out the
difference x− cosx.) [20]

2

Question 2. [20 marks] Inner products.

(a) Write a function that takes as input two Euclidean vectors u⃗ = {u1, u2, ..., uN} ∈ RN

and v⃗ = {v1, v2, ..., vN} ∈ RN (of type valarray<long double>) and returns
their inner product (also known as Hadamard product)

u⃗ · v⃗ =
N∑
i=1

uivi (1)

as a long double number. Your function may use (u*v).sum() to compute the
dot product of the valarrays u and v. Create a constant valarray<long
double> equal to u={0.1,0.1,...,0.1} with N = 106 elements. Demonstrate
that your program works by computing the dot product u⃗ · u⃗ for this constant vector.
Display the difference u⃗ · u⃗− 104 on the screen. [5]

(b) Repeat Question 2a using Kahan compensated summation to compute the sum. [5]

(c) Write code for a function object that has a member variable m of type int, a suitable
constructor, and a member function of the form
double operator()(const valarray<double> u) const {

...
}
which returns the weighted norm

ℓm(v⃗) =
m

√√√√ N∑
i=0

|vi|m (2)

Use this function object to calculate the norm ℓ2(u⃗) for the vector in Question 2a. Does
the quantity ℓ2(u⃗)

2 equal the inner product u⃗ · u⃗ that you obtained above? [Note: half
marks awarded if you use a regular function instead of a function object.] [10]

3

Question 3. [20 marks] Finite differences.

(a) Write a C++ program that uses finite difference methods to numerically evaluate the
first derivative of a function f(x) whose values on a fixed grid of points are specified
f(xi), i = 0, 1, ..., N . Your code should use three instances of a valarray<long
double> to store the values of xi, f(xi) and f ′(xi). Assume the grid-points are located
at xi = a+ i∆x with ∆x = (b− a)/N . on the interval x ∈ [a, b] and use 2nd order
finite differencing to compute an approximation for f ′(xi):

f ′(x0) =
−3f(x0) + 4f(x1)− f(x2)

2∆x
+O(∆x2) for i = 0

f ′(xi) =
f(xi+1)− f(xi−1)

2∆x
+O(∆x2) for i = 1, 2, ..., N − 1

f ′(xN) =
f(xN−2)− 4f(xN−1) + 3f(xN)

2∆x
+O(∆x2) for i = N

Demonstrate that your program works by evaluating the derivatives of a known function,
f(x) = sin 3x, with N + 1 = 32 points on the interval x ∈ [a, b] = [−1, 1]. Compute the
difference between your numerical derivatives and the known analytical ones:

ei = f ′
numerical(xi)− f ′

analytical(xi)

at each grid-point. Output the values ei of this valarray<long double> on the
screen and tabulate (or plot) them in your report. [10]

(b) For the same choice of f(x), demonstrate 2nd-order convergence, by showing that, as N
increases, the mean error ⟨e⟩ decreases proportionally to ∆x2 ∝ N−2 . You may do so
by tabulating the quantity N2⟨e⟩ for different values of N (e.g. N + 1 = 16, 32,
64, 128) and checking if this quantity is roughly constant. Alternatively, you may plot
log⟨e⟩ vs. logN and check if the dependence is linear and if the slope is -2.
Here, the mean error ⟨e⟩ is defined by

⟨e⟩ = 1

N + 1

N∑
i=0

|ei| =
1

N + 1
ℓ1(e⃗).

You may use your code from Question 3c to compute the ℓ1 norm. [10]

4

Question 4. [20 marks] Numerical integration.
We wish to compute the definite integral

I =

∫ b

a

sin

(
1

x+ 1
2

)
dx

numerically for a = 0, b = 10 and compare to the exact result, Iexact = 2.74324739415100920.

(a) Use the composite trapezium rule∫ b

a

f(x)dx ≃
N∑
i=0

wifi, wi =

{
∆x/2, i = 0 or i = N

∆x 1 ≤ i ≤ N − 1
, ∆x =

b− a

N
,

to compute the integral I , using N + 1 = 128 equidistant points in x ∈ [a, b]. Use three
instances of a valarray<long double> to store the values of the gridpoints xi,
function values fi = f(xi) and weights wi. [Hint: you may use the function from
Question 2a to compute the dot product of the valarrays wi and fi.] Output to the
screen (and list in your report) your numerical result Itrapezium and the difference
Itrapezium − Iexact. [5]

(b) Use the composite Hermite rule∫ b

a

f(x)dx ≃
N∑
i=0

wifi +
∆x2

12
[f ′(a)− f ′(b)]

with the derivatives f ′(x) at x = a and x = b evaluated analytically (and the weights wi

identical to those given above for the trapezium rule), to compute the integral I , using
N + 1 = 128 equidistant points in x ∈ [0, 1]. Output to the screen (and list in your
report) your numerical result IHermite and the difference IHermite − Iexact. [5]

(c) Use the Clenshaw-Curtis quadrature rule∫ b

a

f(x)dx ≃
N∑
i=0

wifi, wi =
b− a

2
∗

{
1
N2 , i = 0 or i = N
2
N

(
1−

∑(N−1)/2
k=1

2 cos(2kθi)
4k2−1

)
1 ≤ i ≤ N − 1

,

on a grid of N + 1 = 128 points xi = [(a+ b)− (b− a) cos θi]/2, where θi = iπ/N ,
i = 0, 1, ..., N to compute the integral I . [Hint: First compute the values of θi, xi,
fi = f(xi) and wi and store them as valarrays. Then, you may use the function from
Question 2a to compute the dot product of the valarrays wi and fi.] Output to the
screen (and list in your report) your numerical result IClenshawCurtis and the difference
IClenshawCurtis − Iexact. [5]

(d) Compute the integral I using a Mean Value Monte Carlo method with N = 1000,
N = 10000 and N = 100000 samples. Output to the screen (and list in your report)
your numerical results IMonteCarlo and the difference IMonteCarlo − Iexact for each N . [5]

5

Question 5. [20 marks] Stellar equilibrium.
Consider the generalized Lane-Emden equation, in the form of the initial value problem{

h′′(x) + 2
x
h′(x) + h(x) = 0

h(0) = 1, h′(0) = 0
(3)

This equation describes the structure of a self-gravitating planet or stellar object with mass
density ρ(h) = h, where h is the specific enthalpy. Setting m(x) := −x2h′(x), the above
2nd-order differential equation can be reduced to a system of two 1st-order differential
equations for h(x) and m(x):

h′(x) =

{
0 x = 0

− 1
x2m(x) x > 0

m′(x) = h(x)x2

h(0) = 1

m(0) = 0

(4)

The above equation appears singular at x = 0, but one can use a Taylor expansion about the
origin to show that m(x) ≃ 2

3
x3 +O(x5) for small x, so that h′(0) = 0.

(a) Declare a function

valarray<long double> F(const long double t, const
valarray<long double>& u) {

...
}

that takes the radius x and a valarray with elements u⃗ = {h,m} as arguments and
returns a valarray with components f⃗ = {h′,m′} as output, with h′,m′ given by Eq. (4)
above. [5]

(b) Solve the above 1st-order system numerically, with a 4th-order Runge-Kutta method
long double RK4(const double t, const double dt, const
valarray<long double> &, long double f(const long double,
valarray<long double> &) {

...
}

using N + 1 = 151 equidistant points in x ∈ [0, π].

Declare a valarray of valarrays:

valarray<valarray<long double>> u

and use it to store u⃗(xi) = {hi,mi} = {h(xi),m(xi)} at each grid-point xi.

Output (only) the values {x0, x10, x20, ..., xN} and {h(x0), h(x10), h(x20), ..., h(xN)} to
the screen and tabulate them in your report. [5]

6

(c) Compute the difference e(x) = hnumerical(x)− hexact(x) between your numerical solution
hnumerical(x) and the exact solution

hexact(x) = sincx =

{
sinx
x

x ̸= 0

1 x = 0

Output the error values e(x0), e(x10), e(x20), ..., e(xN) to the screen and tabulate them in
your report. Comment on whether the error is what you expected and why. What is the
radius x = R of the star, where hexact(x) = 0? [Hint: use your answer from Question 1].

Remark: it is more convenient to display {xi}, {h(xi)}, {e(xi)} all at once, that is,
answer Questions 5b and 5c in the same loop. [5]

(d) Compute the error norms:

l1(e⃗) =
N∑
i=0

|ei|, l2(e⃗) =

√√√√ N∑
i=0

|ei|2

where ei = e(xi) is the error at each grid-point. [Hint: you may use your C++
implementation of Eq. (2) from Question 2 to compute the norms.] Comment on
whether the error norms are what you expected. [5]

End of Paper.

7

