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All answers are to be written in C++ code files which will compile when included in
a project. Use one file for each question. If a question asks for any statement about
the results, include the answer as a comment in the code.

Question 1. [23 marks]

(a) The lower incomplete gamma function can be expressed as an infinite series

γ(α, x) =
∞

∑
k=0

(−1)kxα+k

k!(α + k)
.

Write a function that calculates the sum of the first n terms of the series. The
input arguments should be α, x and n. [12]

(b) Write a modified version of the function from part (a) that calculates the sum up
to the first value of k where ∣∣∣∣∣ (−1)kxα+k

k!(α + k)

∣∣∣∣∣ < ε

for some ε > 0. The input arguments should be α, x and ε. [7]

(c) Approximate γ(α, x) with α = 4.2, x = 1.5 using both versions of the function,
with n = 12 and with ε = 1× 10−4. [4]

Question 2. [25 marks]

(a) The Weibull distribution with parameters η, κ > 0 has cumulative distribution
function (cdf)

F(x) = 1− e−(ηx)κ
, x ≥ 0.

Write code that calculates the inverse function of F(x), i.e. the function G(u)
such that if u = F(x) then x = G(u).

Hence, using the inverse cdf method, write code to generate random variables
from the Weibull distribution. Fill in a vector of size 10, 000 with Weibull
random variables, using parameters η = 0.5, κ = 2. [17]

(b) The theoretical median of the Weibull distribution is

a =
1
η
(1− log(0.5))1/κ .

Count what proportion of your random sample is less than a. [8]
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Question 3. [30 marks]

(a) Suppose that we want to approximate the following integral

I =
π/4∫
0

cos(x)4 dx.

Let In be the estimate of I obtained by using the trapezium method with n
sub-intervals. Define

rn =

∣∣∣∣ I2n − In

In

∣∣∣∣ ,

the relative change in the result when n is doubled. Compute values of In
starting from n = 5, doubling n until rn < 1× 10−4. [18]

(b) Write code for a function object that has one member variable m of type int, a
suitable constructor, and a member function of the form
double operator()(const double x) const {

which returns cos(x)m.

Use this function object with the trapezium method to approximate I, using the
final value of n from part (a).

Use another instance of this function object to approximate

J =
π/2∫
0

cos(x)6 dx

using the same value of n. [12]

c© Queen Mary University of London (2018) Turn Over



Page 4 MTH6150 (2018)

Question 4. [22 marks]

(a) A simple model for an infectious disease outbreak in a population is the
following

dS
dt

= −βSI

dE
dt

= βSI − γE

dI
dt

= γE− αI

dR
dt

= αI

where β, γ and α are constants. The model states S, E, I and R are the number
of people who are susceptible, infected, infectious and recovered, respectively.

Use the modified Euler method to numerically solve these equation from t = 0
to 1000, with γ = 0.15, α = 0.25 and β = 0.0005 (all time units are in days),
using n = 5000 steps. As initial values, take
S(0) = 999, E(0) = 1, I(0) = 0, R(0) = 0. [16]

(b) Create a vector of size 1000, and fill it in with the numerical solution of the
value of S(t) for t = 1, 2, . . . , 1000. Also, output the final values of S, E, I and R
at t = 1000 to the screen. [6]

End of Paper.
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