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Question 1. [25 marks]

(a) Let {N(t): t > 0} be a renewal process with interarrival times X; (for
i € N), which are independent, identically distributed random variables

with mean p = E[X;], where 0 < 1 < 0o. Let m(t) = E[N(t)] for each
t > 0. What does the Elementary Renewal Theorem say about
limy oo @? What does it say about lim;_, @?

(b) State the Renewal Reward theorem.

Suppose that a smoke alarm holds one battery at a time. When a battery
fails, it is replaced immediately. It is replaced with a brand-A battery with
probability 2/5 and with a brand-B battery with probability 3/5. The
lifetime of each brand-A battery (measured in years) has the exponential
distribution with parameter 5 years™', i.e. it has pdf

Le=2/3  if x>0
r)=1<3 -
Ja(@) {0 if 2 < 0.

The lifetime of a brand-B battery (measured in years) has pdf

3p(2—2) f0<z<2,
fB(m) — 4 ( ) — . )
0 otherwise.

The lifetimes of all bulbs are independent of one another.

(c) Write down, or calculate, the expected lifetime of a brand-A battery.
(d) Find the expected lifetime of a brand-B battery.

(e) In the long run, what is the average number of battery-replacements
per year?

(f) Suppose that a brand-A battery costs £3 and a brand-B battery costs

£2. In the long run, what is the average cost per year of replacing
batteries in the smoke alarm?

(g) Suppose now that you have a choice of either using only brand-A
batteries, or only using brand-B batteries. Which strategy would be
more cost-effective in the long run? Justify your answer.
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Question 2. [30 marks|

(a) State the Superposition Lemma and the Thinning Lemma for Poisson
processes.

Two archers, Alice and Bob, play a game where they both shoot arrows at a
target. They both start shooting at the same time. Alice scores hits on the
target according to a Poisson process of rate 2 per minute. Bob scores hits on
the target according to a Poisson process of rate 1 per minute. Your answers
to the following questions should be expressed in terms of powers of e, where
necessary, but they should be simplified as much as possible in all other ways.

(b) What is the probability that Alice has scored just one hit after 3
minutes?

(c) What is the probability that Alice has scored just one hit after 3
minutes and just four hits (in total) after 5 minutes?

(d) What is the probability that the total number of hits (by both Alice
and Bob) is 2, after 3 minutes?

(e) Suppose that each of Alice’s hits is a bull’s-eye with probability 1/8,
independently of all other hits. What is the expected time until Alice
scores her first bull’s-eye?

(f) Suppose now that the game lasts for 2 minutes and that at the end of
the game, the score is 4 hits to Alice and 2 hits to Bob. Conditional on
this information,

(i) What is the probability that Alice has scored just one hit after one
minute of the game (i.e., halfway through the game)?

(i) What is the probability that Bob is ahead of Alice after one
minute of the game?
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Question 3. [20 marks] A robot has just three speeds: 5 mph, 10 mph
and 30 mph. When it changes speed to 30 mph, it remains at that speed on
average for 2 hours before changing speed to either 10 mph (with probability
3/4) or to 5 mph (with probability 1/4). When it changes speed to 10 mph,
it remains at that speed on average for 4 hours before changing speed to
either 5 mph (with probability 1/2) or to 30 mph (with probability 1/2).
When it changes speed to 5 mph, it remains at that speed on average for 1
hour before changing speed to either 10 mph (with probability 3/4) or to 30
mph (with probability 1/4).

(a) What extra assumption do we need to make in order to model the
changing speed of the robot as a semi-Markov process?

(b) Assume that the changing speed of the robot forms a semi-Markov
process. Label the states as 1, 2 and 3 (in increasing order of speed).
Write down the transition matrix P of the associated discrete-time
Markov chain with the same state-space and transition-probabilities.

(¢) Find an equilibrium distribution 7 = (7, my, w3) for the associated
discrete-time Markov chain, and show that it is the unique equilibrium
distribution, by solving the equations

3
™ P=m, g m=1,
i=1

and showing that the solution is unique.

(d) Estimate the proportion of time the robot spends at each of the three
speeds, over a very long time-period.

(e) Assume that the robot travels in a straight line without reversing
direction. Estimate the average speed of the robot over a very long
time-period.
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Question 4. [25 marks|

(a) Let {X(t): ¢t > 0} be a continuous-time Markov chain with generator
matrix G, finite state space S, and time-¢ transition matrices
{P(t) : t>0}. Let m = (m;);es be a probability distribution on S.
Define (in terms of the generator matrix G, or otherwise) what it means
for m to be an equilibrium distribution for the continuous-time Markov
chain {X(¢) : ¢ > 0}. Define (in terms of the matrices {P(t) : t > 0}, or
otherwise) what it means for 7 to be a limiting distribution for the
Markov chain.

A small post office has two clerks. The customers in the post office who are
waiting to be served, join a single queue. If there are at most two customers in
the post office, the time until the arrival of the next customer is exponentially
distributed with mean 5 minutes, but if there are three customers in the post
office, no new customers enter. Each clerk can only serve one customer at a
time, and the time taken to serve each customer is exponentially distributed
with mean 10 minutes. After being served, a customer leaves.

(b) Let Y(t) denote the total number of customers in the post office, ¢
minutes after it has opened. Find the generator matrix G for the
continuous-time Markov chain {Y'(¢) : ¢ > 0}, indicating how the rows
and columns of GG are indexed by the states.

(c¢) Find an equilibrium distribution for the continuous-time Markov chain
in part (b), and show that it is the unique equilibrium distribution.

(d) Explain why any state of this Markov chain communicates with any
other state.

(e) State, with justification, the limiting distribution of this Markov chain.
(You may appeal to any standard theorem or fact from the course,
without proving it.)

(f) Estimate the proportion of time for which there are three customers in
the post office, in the long run.

End of Paper.
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