University of London

Main Examination period 2017

MTH6934: Topics in Probability and Stochastic Processes
 Duration: 2 hours

Apart from this page, you are not permitted to read the contents of this question paper until instructed to do so by an invigilator.

You should attempt ALL questions. Marks available are shown next to the questions.

Calculators are not permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Complete all rough work in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately.

It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms, it shall be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

Exam papers must not be removed from the examination room.

Examiners: Dr Dudley Stark, Dr Christopher Joyner

Question 1. [20 marks] Let $N(t), t \geq 0$, be a continuous time renewal process with interoccurrence times $X_{i}>0$ for $i=1,2, \ldots$, which are independent, identically distributed continuous random variables with common distribution $\mathbb{P}\left(X_{i} \leq x\right)=F(x)$. Let $S_{0}=0$ and let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ be the waiting time until the occurrence of the nth event for $n \geq 1$. Suppose $\mu=\mathbb{E}\left(X_{1}\right)<\infty$. Let $M(t)=\mathbb{E}(N(t))$.
(a) Prove that for all integers $n \geq 1$ and all real numbers $t>0$,

$$
\mathbb{P}(N(t)=n)=\mathbb{P}\left(S_{n} \leq t\right)-\mathbb{P}\left(S_{n+1} \leq t\right) .
$$

(b) Let X_{i} take on positive integer values. Show that, with $p_{i}=\mathbb{P}\left(X_{1}=i\right)$, the renewal function $M(n)$ satisfies

$$
M(n)=F(n)+\sum_{i=1}^{n-1} p_{i} M(n-i) .
$$

(c) Suppose that each X_{i} is $\operatorname{Geometric}(\beta)$ distributed with probability mass function $\mathbb{P}\left(X_{i}=k\right)=\beta(1-\beta)^{k-1}, k=1,2, \ldots$, for a parameter $\beta \in[0,1]$. Use the recursive formula in (b) to find $M(1), M(2)$ and $M(3)$.

Question 2. [20 marks]

(a) Given a semi-Markov process on states $\{1,2, \ldots, N\}$, suppose that when the process enters state i, it stays there a random amount of time having expectation μ_{i} after which it jumps to state j with probability $P_{i, j}$. Let π_{i} denote the proportion of transitions to i in the long run. Write down the equations derived in a lecture which, when they can be solved uniquely, determine the π_{i}.
(b) (i) A particular machine in a factory is powered by a battery. The battery is in constant use. As soon as the battery in use fails, it is replaced with a new battery. If the lifetime of a battery (in hours) is distributed uniformly over the interval $(30,60)$, then at what rate in the long run are batteries replaced?
(ii) Suppose that the lifetime of a battery (in hours) is still distributed uniformly over the interval $(30,60)$, but that now each time a failure occurs a worker must go and get a new battery from storage, after which the failed battery is immediately replaced with the new battery. If the amount of time (in hours) it takes a worker to get a new battery is uniformly distributed over $(0,1)$, then what is the new rate at which batteries are replaced in the long run? For what proportion time is the battery in the machine a failed battery?

Question 3. [20 marks] Let S_{i} for $i=1,2, \ldots$ denote the time of the i th event of a Poisson process $N(t), t \geq 0$, with rate $\theta>0$.
(a) Find $\mathbb{E}\left(S_{i}\right)$.
(b) Derive

$$
\mathbb{E}\left(\left.\frac{1}{n} \sum_{i=1}^{n} S_{i} \right\rvert\, N(t)=n\right) .
$$

Question 4. [20 marks]

(a) Let $X(t)$ be a continuous time Markov chain with conditional probability densities

$$
f_{n}\left(y_{n}, t_{n} \mid y_{n-1}, t_{n-1} ; y_{n-2}, t_{n-2} ; \ldots ; y_{1}, t_{1}\right),
$$

where $0 \leq t_{1}<t_{2}<\cdots<t_{n}$ and $y_{i} \in \mathbb{R}$ for all $1 \leq i \leq n$, where \mathbb{R} is the set of real numbers. State what is meant by the Markov property for $X(t)$.
(b) In the East London Health Club there are two swimmers who are training for the Olympics. Each swimmer alternates between a period of swimming freestyle, a period of swimming the backstroke, another period of swimming freestyle, and so on, for a long period of time. The lengths of the periods of swimming freestyle are all exponentially distributed with mean of 5 minutes and the lengths of the periods of swimming backstroke are all exponentially distributed with mean of 4 minutes. The lengths of the periods are all independent of each other. Let $X(t)$ be the number of swimmers swimming the backstroke at time $t>0$. What is the generator \mathbf{G} for the continuous time Markov chain $X(t)$?

Question 5. [20 marks] Let $B(t)$ be a standard Brownian motion with $B(0)=0$.
(a) State what is meant by the independent increments property.
(b) Determine the distribution of $B(s)+B(t)$.
(c) Let $\alpha_{1}, \ldots, \alpha_{n}$ be real constants. Prove that

$$
\sum_{i=1}^{n} \alpha_{i} B\left(t_{i}\right)
$$

is normally distributed with mean zero and variance

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \min \left(t_{i}, t_{j}\right)
$$

