

Main Examination period 2023 – January – Semester A MTH6102: Bayesian Statistical Methods

Duration: 2 hours

The exam is intended to be completed within **2 hours**. However, you will have a period of **4** hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be **handwritten** and should **include your student number**. Only one attempt is allowed – **once you have submitted your work, it is final**.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a **single PDF file**, and submit this file using the tool below the link to the exam;
- e-mail a copy to **maths@qmul.ac.uk** with your student number and the module code in the subject line;

Examiners: J. Griffin, D. Stark

Question 1 [24 marks].

Suppose that we have data $y = (y_1, ..., y_n)$. Each data-point is assumed to be generated by a distribution with the following probability density function:

$$p(y_i \mid \psi) = 2\psi y_i \exp\left(-\psi y_i^2\right), \ y_i \ge 0, \ i = 1, \dots, n.$$

The unknown parameter is ψ , with $\psi > 0$.

- (a) Write down the likelihood for ψ given *y*. Find an expression for the maximum likelihood estimate (MLE) $\hat{\psi}$.
- (b) A Gamma(α, β) distribution is chosen as the prior distribution for ψ . Derive the resulting posterior distribution for ψ given *y*.
- (c) Show that the posterior mean for ψ is always in between the prior mean and the MLE for this example. [5]
- (d) The data are y = (2, 6, 5, 4, C + 1), where C is the last digit of your ID number, with n = 5. The prior distribution is Gamma(2,2).
 - (i) What is the MLE $\hat{\psi}$?

[3]

[4]

[**6**]

[6]

(ii) What is the posterior distribution for ψ? Based on this posterior distribution, calculate a point estimate for ψ. [4]

Question 2 [19 marks].

The data $y = (y_1, ..., y_n)$ is a sample from a normal distribution with unknown mean μ and known standard deviation $\sigma = 2$. The prior distribution for μ is normal $N(\mu_0, \sigma_0^2)$. The posterior distribution is $\mu | y \sim N(\mu_1, \sigma_1^2)$, where

$$\mu_1 = \left(\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{y}}{\sigma^2}\right) / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right), \ \sigma_1^2 = 1 / \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right), \text{ and } \bar{y} \text{ is the sample mean.}$$

- (a) As the prior distribution becomes less informative, what value does the posterior mean for μ approach? As the prior distribution becomes more informative, what value does the posterior mean for μ approach?
- (b) Suppose that we take $\mu_0 = 0$, and we want the prior probability $P(|\mu| \le A + 20)$ to be 0.9, where *A* is the third-to-last digit of your ID number. What value for σ_0 should we choose? [4]

Let the sample mean be B + 1, where B is the second-to-last digit of your ID number, and the sample size be n = 40. Use the prior distribution found in part (b).

- (c) What is the posterior distribution for μ , $p(\mu | y)$? What is the posterior median for μ ? [4]
- (d) Let x be a future data-point from the same $N(\mu, \sigma^2)$ distribution. Find the posterior predictive mean and variance of x. [7]

Continue to next page

Question 3 [26 marks].

The dataset $y = (y_1, \ldots, y_n)$ is a sample from a Poisson distribution with parameter λ . A Gamma(α, β) prior distribution is assigned to λ . Apart from part (c), the answers do not need any numerical calculations. In the following R code, the data y is denoted by y in the code, and alpha and beta are the prior parameters.

```
alpha = 3
beta = 3
a = sum(y) + alpha
b = length(y) + beta
pgamma(2, shape=a, rate=b)
qgamma(c(0.5, 0.025, 0.975), shape=a, rate=b)
```

(a) In statistical terms, what will the last line of code output? [5]

- (b) What will the line which starts with pgamma output? [2]
- (c) Let *B* and *C* be the second-to-last and last digits of your ID number, respectively. Take the sample size n = B + 15, and $\sum_{i=1}^{n} y_i = C + 30$. What are the posterior mean and standard deviation for λ ? [5]

The R code below follows on from the code above.

- v = rgamma(5000, shape=a, rate=b)
 w = rpois(length(v), lambda=v)
 mean(w==0)
- (d) When this code has run, what will v contain? What will w contain? [6]
- (e) What quantity will the last line of code output (in statistical terms)? [3]
- (f) State one advantage of using a prior distribution which is conjugate to the likelihood. [2]
- (g) Suppose that we assumed some other prior distribution instead of a gamma distribution. What method could we use to make inferences based on the resulting posterior distribution for λ ? [3]

Question 4 [16 marks].

The observed data is $y = (y_1, ..., y_n)$, a sample from a geometric distribution with parameter q. The prior distribution for q is uniform on the interval [0, 1]. Suppose that $y_1 = \cdots = y_n = 0$. Take n = 10 + A, where A is the third-to-last digit of your ID number.

(a) What is the normalized posterior probability density function for q ? [5]	5]
---	----

Suppose now that we want to compare two models. Model M_1 assumes that the data follow a geometric distribution with q known to be $q_0 = 0.8$. Model M_2 is the model and prior distribution described above.

- (b) Find the Bayes factor B₁₂ for comparing the two models. [6]
 (c) We assign prior probabilities of 1/2 that each model is the true model. Find the
- (d) State a drawback of using Bayes factors and posterior probabilities to compare models. [2]

© Queen Mary University of London (2023)

posterior probability that M_1 is the true model.

Continue to next page

[•]

[3]

Question 5 [15 marks].

The observed data $y = \{y_{ij}, i = 1, ..., n, j = 1, ..., m_i\}$ are the average results in an exam for school *j* within county *i*. The following hierarchical model is considered reasonable:

$$y_{ij} \sim \text{Normal}(\mu_i, \sigma_S^2), \ j = 1, \dots, m_i$$

 $\mu_i \sim \text{Normal}(\mu_C, \sigma_C^2), \ i = 1, \dots, n.$

where μ_C , σ_S and σ_C are unknown parameters which are each assigned a prior distribution. Suppose that we have generated a sample of size *M* from the joint posterior distribution $p(\mu_C, \sigma_S, \sigma_C, \mu_1, ..., \mu_n | y)$.

- (a) Explain how to use the posterior sample to estimate the following:
 - (i) the posterior mean for μ_C ;
 - (ii) a 95% credible interval for σ_S / σ_C ;
 - (iii) the posterior probability that $\mu_1 < \mu_2$.
- (b) Explain how to generate a sample from the posterior predictive distribution of the result for a school not in our dataset, in each of the following two cases:
 - (i) if the county containing the school is in our dataset;
 - (ii) or if the county is not in our dataset.

End of Paper – An appendix of 1 page follows.

© Queen Mary University of London (2023)

Continue to next page

[8]

[7]

MTH6102 (2023)

Appendix: common distributions

For each distribution, x is the random quantity and the other symbols are parameters.

Discrete distributions

Distribution	Probability mass function	Range of parameters and variates	Mean	Variance
Binomial	$\binom{n}{x}q^x(1-q)^{n-x}$	$0 \le q \le 1$ $x = 0, 1, \dots, n$	nq	nq(1-q)
Poisson	$\frac{\lambda^{x}e^{-\lambda}}{x!}$	$\lambda > 0$ $x = 0, 1, 2, \dots$	λ	λ
Geometric	$q(1-q)^x$	$0 < q \le 1$ $x = 0, 1, 2, \dots$	$\frac{(1-q)}{q}$	$\frac{(1-q)}{q^2}$
Negative binomial	$\binom{r+x-1}{x}q^r(1-q)^x$	$0 < q \le 1, r > 0$ $x = 0, 1, 2, \dots$	$\frac{r(1-q)}{q}$	$\frac{r(1-q)}{q^2}$

Continuous distributions

Distribution	Probability density function	Range of parameters and variates	Mean	Variance
Uniform	$\frac{1}{b-a}$	$-\infty < a < b < \infty$ $a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$-\infty < \mu < \infty, \sigma > 0$ $-\infty < x < \infty$	μ	σ^2

The 95th and 97.5th percentiles of the standard N(0, 1) distribution are 1.64 and 1.96, respectively.

Exponential	$\lambda e^{-\lambda x}$	$\lambda > 0$ $x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma	$\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}$	$\begin{array}{l} \alpha > 0, \beta > 0 \\ x > 0 \end{array}$	$rac{lpha}{eta}$	$rac{lpha}{eta^2}$
Beta	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\alpha > 0, \beta > 0$ $0 < x < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

End of Appendix.

© Queen Mary University of London (2023)