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Question 1. [20 marks]

(a) Show that a Poisson distribution with mean θ is an exponential family. [6]

(b) If a random sample of n Poisson distributed observations is collected write down a
sufficient statistic for θ. [2]

(c) It is believed that the number of accidents in a new factory will follow a Poisson
distribution with mean θ per month. The prior distribution of θ is given by a gamma
distribution Ga(α, β).

(i) A safety inspector assesses that based on his experience at a similar factory
α = 12, β = 4. If there are 18 accidents in the first eight months, derive the
posterior distribution of θ and find its mean and variance. [7]

(ii) Show the posterior mean can be written as a weighted average of the prior mean
and the sample mean. [5]

Question 2. [15 marks] A horticulturalist is interested in the probability θ that a seed of a
particular variety germinates successfully. Her prior distibution for the germination
probability can be represented by the Be(a, b) distribution. In an experiment she sows n seeds
of which x germinate successfully.

(a) Find her posterior distribution for θ. [4]

(b) If she decides that a = 3, b = 1 and she observes x = 7 successes with n = 10 seeds, find
her posterior distribution for θ. [2]

(c) If she wishes to estimate θ using a quadratic loss function

l(t, θ) = (t− θ)2

derive the Bayes estimate of θ and the expected loss and calculate their values. [9]

Question 3. [25 marks]

(a) A random sample of failure times t1, . . . , tn is observed for n machine components. Each
ti is assumed to have an exponential distribution with mean λ−1 and the prior
distribution for λ is taken as Ga(α, β) with parameters α and β. Find the posterior
distribution of λ. [5]

(b) Show that for the situation described in (a), the marginal likelihood (or prior predictive
density) is given by

p(t1, . . . , tn) =
βαΓ(α+ n)

Γ(α)(β + Sn)α+n

where Sn =
∑n
i=1 ti. [8]

(c) Suppose n = 10,
∑
ti = 50, α = 5 and β = 20. Find the Bayes factor to test the null

hypothesis that λ = α/β against an alternative that λ has a Ga(α, β) prior. What is
your conclusion? [12]
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Question 4. [15 marks]

(a) Define a (1− α)× 100% credible interval. [3]

(b) The plot below shows the density of the posterior distribution of parameter θ. Comment
on what this shows. [5]

(c) Make a sketch of this posterior and include an example of a 100(1− α)% highest
posterior density interval, this need not be to scale but should show the necessary
properties such an interval has. [4]

(d) What is the advantage of a credible interval over a classical confidence interval? [3]
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Figure 1: Plot of posterior density.
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Question 5. [25 marks]
Observations are taken from a model

yij ∼ No(αi, ξ) for i = 1, 2 and j = 1, . . . , ni.

Note that ξ is the precision. The priors for α1 and α2 are respectively No(2, 2ξ) and No(6, 4ξ)
and they are assumed independent. The prior for ξ is Ga(a/2, b/2).

(a) Find the posterior distributions of α1 and α2 given ξ, p(α1|y, ξ) and p(α2|y, ξ). [11]

(b) Find the posterior distribution of ξ given α1 and α2, p(ξ|y, α1, α2). [7]

(c) Explain how samples from the unconditional posterior distributions of α1, α2 and ξ can
be simulated using Gibbs sampling. [7]

Hint: For a two-stage linear model

y|θ1 ∼ N(A1θ1, C1)
θ1 ∼ N(µ,C2)

where A1, C1, C2 and µ are known, the posterior distribution of θ1 is N(Bb,B) where

B−1 = AT1 C
−1
1 A1 + C−1

2 ,

b = AT1 C
−1
1 y + C−1

2 µ.

End of Paper – An appendix of 2 pages follows.

c© Queen Mary University of London (2019)



MTH6909 (2019) Page 5

Bayesian Statistics – Common Distributions

Discrete Distributions

Distribution Density Range of Variates Mean Variance

Uniform 1
N N = 1, 2, . . . N+1

2
N2−1

12
x = 1, 2, . . . , N

Bernoulli px(1− p)1−x 0 ≤ p ≤ 1, x = 0, 1 p p(1− p)

Binomial
(n
x

)
px(1− p)n−x 0 ≤ p ≤ 1, n = 1, 2, . . . np np(1− p)

x = 0, 1, . . . n

Poisson exp(−λ)λx

x! λ > 0, x = 0, 1, 2, . . . λ λ

Geometric p(1− p)x 0 < p ≤ 1, x = 0, 1, 2, . . . (1−p)
p

(1−p)
p2

Negative
(r+x−1

x

)
pr(1− p)x 0 < p ≤ 1, r > 0 r(1−p)

p
r(1−p)
p2

Binomial x = 0, 1, 2, . . .

Continuous Distributions

Uniform 1
b−a −∞ < a < b <∞ a+b

2
(b−a)2

12

a < x < b

Normal N(µ, σ2) 1√
2πσ2

exp[−(x−µ)2

2σ2 ] −∞ < µ <∞ µ σ2

σ > 0, −∞ < x <∞
Normal No(µ, h)

√
h√
2π

exp[−h(x−µ)2

2 ] −∞ < µ <∞ µ h−1

h > 0, −∞ < x <∞
Exponential λ exp(−λx) λ > 0, x ≥ 0 1

λ
1
λ2

Gamma Ga(α, β) βαxα−1 exp(−βx)
Γ(α) α > 0, β > 0, x > 0 α

β
α
β2
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Distribution Density Range of Variates Mean Variance

Beta Be(a, b) Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1 a > 0, b > 0, 0 < x < 1 a
a+b

ab
(a+b+1)(a+b)2

tν(m, g) g1/2Γ((ν+1)/2)√
(νπ)Γ(ν/2)

−∞ < x <∞ location m precision g,

×
[
1 + g

ν (x−m)2
]−(ν+1)/2

dof ν

Fmn
Γ[(m+n)/2]

Γ(m/2)Γ(n/2)

(
m
n

)m
2 m,n = 1, 2, . . . n

n−2
2n2(m+n−2)
m(n−2)2(n−4)

× x(m−2)/2

[1+(m/n)x](m+n)/2 x ≥ 0 for n > 2 for n > 4

χ2
k

1
Γ(k/2)2k/2

xk/2−1 exp(−x
2 ) k = 1, 2, . . ., x > 0 k 2k

Pareto αβα

xα+1 α > 0, β > 0, x > β βα
(α−1)

β2α
(α−1)2(α−2)

End of Appendix.
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