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Question 1. [23 marks] A biased coin, which has probability θ of landing heads,
is tossed repeatedly until the first head is seen. We call this one trial.

(a) Show that the total number of tails, x, in one trial has a geometric
distribution. [3]

(b) If a Beta Be(α, β) distribution is chosen as the prior distribution find the
posterior distribution if there are n trials. [5]

(c) If a Be(3, 3) prior is chosen and there are a total of 20 tosses in 5 trials find
the posterior mean of θ and a 95% highest posterior density interval. [7]

(d) Show that the Jeffreys’ prior is proportional to 1/θ
√

(1− θ) and hence find
the corresponding posterior distribution. [8]

Question 2. [20 marks]

(a) Show that if t(x) is sufficient for the family p(x|θ) then for any prior
distribution the posterior distributions given x and t(x) are the same. [4]

(b) The observations x1, x2, . . . , xn are a random sample from a uniform
distribution on the interval (0, θ). The prior distribution for θ is Pareto with
density

p(θ) =
αθα0
θα+1

θ ≥ θ0

and zero otherwise.

(i) Find the posterior distribution of θ. [5]

(ii) Deduce the sufficient statistic for θ. [2]

(iii) Find the Bayes estimate of θ under the loss function

L(t, θ) =
(t− θ)2

t
,

where t is any estimate of θ. [9]
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Question 3. [22 marks]

(a) Show that the Poisson distribution is an exponential family, identifying all
the necessary functions. [5]

(b) Show that a Gamma Ga(α, β) distribution gives a conjugate prior
distribution. [3]

(c) A radioactive device gives hourly counts which are assumed to have a Poisson
distribution with mean θ. The device is observed for three hours and emits x
particles. Two models have been suggested. Firstly that the emissions will
have a Poisson distribution with θ = 2. Secondly that the emissions will have
a Poisson distribution with θ unknown but given a Ga(2, 1) prior.

(i) Show that the first model is preferred if

23x+4

(x+ 1)!
> e6.

[9]

(ii) Hence show that if x = 10 the first model is preferred but if x ≥ 11 the
second model is. [5]

Question 4. [8 marks] The Laplace approximation to the integral∫
exp[−nh(θ)]dθ

over the range of θ, is given by

exp[−nh(θ̂)]
√

2πσ̂/
√
n

where θ̂ maximises −h(θ) and σ̂ = [h′′(θ)]−
1
2 |θ=θ̂.

Explain how to approximate the posterior mean and variance of a distribution using
the Laplace approximation. Why are these approximations often very accurate? [8]
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Question 5. [27 marks]
A two stage linear model is given by

y|θ1 ∼ N(A1θ1, C1)

θ1|µ ∼ N(µ,C2)

where y is a n× 1 vector, θ1 a p× 1 vector and A1, C1, C2, and µ are assumed
known.

(a) Show that the posterior distribution of θ1 can be written in the form
N(Bb,B) where

B−1 = AT1 C
−1
1 A1 + C−1

2

b = AT1 C
−1
1 y + C−1

2 µ

[6]

(b) The yields of chemical in two different processes were recorded at 5 different
temperatures 50◦, 60◦, 70◦, 80◦, 90◦. It is expected that the effect of
temperature will be the same in both processes so a parallel regressions
model is adopted

yij = αi + β(xj − x̄) + εij i = 1, 2, j = 1, . . . , 5

where εij are assumed to be independent and distributed as No(0, ξ), where
the precision ξ is known.. The priors for the unknown parameters are taken
as α1 ∼ No(24, ξ), α2 ∼ No(28, ξ) and β ∼ No(0.5, 5ξ) and all parameters are
assumed to be independent. The data are given in the table below.

Temperature Process 1 yield Process 2 yield

50◦ 14.6 18.9
60◦ 18.8 23.5
70◦ 23.7 29.7
80◦ 27.9 31.5
90◦ 33.4 37.4

(i) Write this model as a two stage linear model. [5]

(ii) Find the posterior distributions of α1, α2 and β. [7]

(c) Suppose now that ξ is unknown and given a Ga(2, 4) distribution.

(i) Find the conditional distribution of ξ given the other parameters and
the data. [4]

(ii) Hence explain how Gibbs sampling could be carried out. [5]

End of Paper—An appendix of 2 pages follows.
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Bayesian Statistics – Common Distributions

Discrete Distributions

Distribution Density Range of Variates Mean Variance

Uniform 1
N N = 1, 2, . . . N+1

2
N2−1

12
x = 1, 2, . . . , N

Bernoulli px(1− p)1−x 0 ≤ p ≤ 1, x = 0, 1 p p(1− p)

Binomial
(
n
x

)
px(1− p)n−x 0 ≤ p ≤ 1, n = 1, 2, . . . np np(1− p)

x = 0, 1, . . . n

Poisson exp(−λ)λx

x! λ > 0, x = 0, 1, 2, . . . λ λ

Geometric p(1− p)x 0 < p ≤ 1, x = 0, 1, 2, . . . (1−p)
p

(1−p)
p2

Negative
(
r+x−1
x

)
pr(1− p)x 0 < p ≤ 1, r > 0 r(1−p)

p
r(1−p)
p2

Binomial x = 0, 1, 2, . . .

Continuous Distributions

Uniform 1
b−a −∞ < a < b <∞ a+b

2
(b−a)2

12

a < x < b

Normal N(µ, σ2) 1√
2πσ2

exp[−(x−µ)2

2σ2 ] −∞ < µ <∞ µ σ2

σ > 0, −∞ < x <∞
Normal No(µ, h)

√
h√
2π

exp[−h(x−µ)2

2 ] −∞ < µ <∞ µ h−1

h > 0, −∞ < x <∞
Exponential λ exp(−λx) λ > 0, x ≥ 0 1

λ
1
λ2

Gamma (α, β) βαxα−1 exp(−βx)
Γ(α) β > 0, α > 0, x > 0 α

β
α
β2
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Distribution Density Range of Variates Mean Variance

Beta (a, b) Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1 a > 0, b > 0, 0 < x < 1 a
a+b

ab
(a+b+1)(a+b)2

tν(m, g) g1/2Γ((ν+1)/2)√
(νπ)Γ(ν/2)

−∞ < x <∞ location m precision g,

×
[
1 + g

ν (x−m)2
]−(ν+1)/2

dof ν

Fmn
Γ[(m+n)/2]

Γ(m/2)Γ(n/2)

(
m
n

)m
2 m,n = 1, 2, . . . n

n−2
2n2(m+n−2)
m(n−2)2(n−4)

× x(m−2)/2

[1+(m/n)x](m+n)/2 x ≥ 0 for n > 2 for n > 4

χ2
k

1
Γ(k/2)2k/2

xk/2−1 exp(−x
2 ) k = 1, 2, . . ., x > 0 k 2k

Pareto αβα

xα+1 α > 0, β > 0, x > β βα
(α−1)

β2α
(α−1)2(α−2)

End of Appendix.
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