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Question 1 (7 marks). Explain what is meant by a non-informative prior. Give
the formula for finding a Jeffreys’ prior. Give one advantage and one disadvantage
of using a non-informative prior.

Question 2 (19 marks). (a) Show that a normal distribution with known
mean 0 and unknown precision θ is an exponential family. [5]

(b) Identify the natural parameter. [1]

(c) If a random sample of n distributed observations x1, x2, . . . , xn from such a
normal distribution is collected write down a minimal sufficient statistic for ξ. [1]

(d) Show that a Gamma distribution Ga(a/2, b/2) is a conjugate prior for ξ by
finding the density of the posterior distribution of θ. [6]

(e) Find the density of the predictive distribution of another independent
observation y. [6]

Question 3 (16 marks). (a) A random sample of observations x1, . . . , xn is
assumed to have uniform distribution on the interval (0, θ). The prior
distribution for θ is taken as Pareto (Par(α, θ0)) with probability density
function

p(θ) =
αθα0
θα+1

θ ≥ θ0.

Show that the posterior distribution of θ is Par(α+ n, S) where S is to be
determined. [6]

(b) Show that the Bayes estimate of θ under the loss function

L(t, θ) =
(t− θ)2

θ
,

where t is any estimate of θ, is given by {E(θ−1 | x)}−1. [5]

(c) Find the Bayes estimate of θ for the posterior in (a) using the loss function in
(b). [5]
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Question 4 (22 marks). (a) A three stage linear model is given by

y | θ1 ∼ N(A1θ1, C1)

θ1 | θ2 ∼ N(A2θ2, C2)

θ2 ∼ N(µ,C3)

where A1, A2, C1, C2, C3, µ are known. Using the results for such a three stage
model and the matrix lemma given in the note at the end of this question,
show that when C−1

3 → 0 the posterior distribution of θ1 is N(D0d0, D0)
where

D−1
0 = AT1 C

−1
1 A1 + C−1

2 − C−1
2 A2(AT2 C

−1
2 A2)−1AT2 C

−1
2

d0 = AT1 C
−1
1 y

[7]

(b) Write the following problem in terms of a three stage linear model.

yi ∼ N(βxi + γzi, 1) i = 1, . . . , n

β ∼ N(µ, 2) γ ∼ N(µ, 2) β and γ independent

and µ has a prior with zero precision. [6]

If 5 observations of y and the associated regressors were as follows

y x z

3 −2 −2
5 −1 0
8 0 2

11 1 3
15 2 5

find the joint posterior distribution of β and γ. [9]

NOTE For a three stage linear model given in the question the posterior
distribution of θ1 is N(Dd,D) where

D−1 = AT1 C
−1
1 A1 + (C2 +A2C3A

T
2 )−1,

d = AT1 C
−1
1 y + (C2 +A2C3A

T
2 )−1A2µ.

Matrix lemma: For any matrices A1, C1, C2 of appropriate dimensions for
which the inverses stated in the result exist we have

C−1
1 − C−1

1 A1(AT1 C
−1
1 A1 + C−1

2 )−1AT1 C
−1
1 = (C1 +A1C2A

T
1 )−1
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Question 5 (22 marks). (a) Suppose the posterior density of a
one-dimensional parameter θ, p(θ|y), is unimodal and roughly symmetric. By

considering a Taylor series expansion of log p(θ|y) about the posterior mode θ̂

show that p(θ|y) can be approximated by a normal distribution with mean θ̂
and a variance which you should determine. [9]

(b) A biased coin is tossed n times and results in y heads. Let θ be the chance
the coin lands heads. If the prior for θ is a beta distribution

p(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1 0 < θ < 1,

find the posterior of θ and its mean and variance. [5]

(c) Use the result in (a) to determine a normal approximation to the posterior in
(b). [8]

Question 6 (14 marks). Suppose we have observations xij which have a Poisson
distribution with mean θj for j = 1, 2, . . . , p and i = 1, 2, . . . , nj . The θj are
independent and distributed with Gamma distributions Ga(αj , β). The parameters
αj are known but β is unknown and assigned a Gamma distribution Ga(γ, δ).
Derive the necessary conditional distributions for Gibbs sampling and explain how
this would proceed.

End of Paper—An appendix of 2 pages follows.

c© Queen Mary, University of London (2016)



MTH6909 (2016) Page 5

Bayesian Statistics – Common Distributions

Discrete Distributions

Distribution Density Range of Variates Mean Variance

Uniform 1
N N = 1, 2, . . . N+1

2
N2−1

12
x = 1, 2, . . . , N

Bernoulli px(1− p)1−x 0 ≤ p ≤ 1, x = 0, 1 p p(1− p)

Binomial
(n
x

)
px(1− p)n−x 0 ≤ p ≤ 1, n = 1, 2, . . . np np(1− p)

x = 0, 1, . . . n

Poisson exp(−λ)λx

x! λ > 0, x = 0, 1, 2, . . . λ λ

Geometric p(1− p)x 0 < p ≤ 1, x = 0, 1, 2, . . . (1−p)
p

(1−p)
p2

Negative
(r+x−1

x

)
pr(1− p)x 0 < p ≤ 1, r > 0 r(1−p)

p
r(1−p)
p2

Binomial x = 0, 1, 2, . . .

Continuous Distributions

Uniform 1
b−a −∞ < a < b <∞ a+b

2
(b−a)2

12

a < x < b

Normal N(µ, σ2) 1√
2πσ2

exp[−(x−µ)2

2σ2 ] −∞ < µ <∞ µ σ2

σ > 0, −∞ < x <∞
Normal No(µ, h)

√
h√
2π

exp[−h(x−µ)2

2 ] −∞ < µ <∞ µ h−1

h > 0, −∞ < x <∞
Exponential λ exp(−λx) λ > 0, x ≥ 0 1

λ
1
λ2

Gamma (α, β) βαxα−1 exp(−βx)
Γ(α) β > 0, α > 0, x > 0 α

β
α
β2
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Distribution Density Range of Variates Mean Variance

Beta (a, b) Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1 a > 0, b > 0, 0 < x < 1 a
a+b

ab
(a+b+1)(a+b)2

tν(m, g) g1/2Γ((ν+1)/2)√
(νπ)Γ(ν/2)

−∞ < x <∞ location m precision g,

×
[
1 + g

ν (x−m)2
]−(ν+1)/2

dof ν

Fmn
Γ[(m+n)/2]

Γ(m/2)Γ(n/2)

(
m
n

)m
2 m,n = 1, 2, . . . n

n−2
2n2(m+n−2)
m(n−2)2(n−4)

× x(m−2)/2

[1+(m/n)x](m+n)/2 x ≥ 0 for n > 2 for n > 4

χ2
k

1
Γ(k/2)2k/2

xk/2−1 exp(−x
2 ) k = 1, 2, . . ., x > 0 k 2k

Pareto αβα

xα+1 α > 0, β > 0, x > β βα
(α−1)

β2α
(α−1)2(α−2)

End of Appendix.
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