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Question 1. [35 marks]

Avalanches on a Cayley tree.
Consider an infinite Cayley tree with branching ratio z.
Consider the following branching process:

- at time t = 1 the root of the Cayley tree topples with probability p;

- at every time t > 1, each node connected to a node that has toppled at time
t− 1 topples with probability p.

We indicate with P(s) the probability that an avalanche has finite size s.
We indicate with π(s) the probability that if we follow a link connecting a node that
has toppled at time t to a node that can topple at time t + 1, we reach a finite
subavalanche of finite size s.

a) Find a recursive equation for π(s). Use the fact that the size of an avalanche s
started from a toppling node is given by s = 1 + ∑z

n=1 sn. Here sn are the sizes
of the causally connected subavalanches reached by following each of the z
possible links n = 1, 2, . . . , z of the toppling node in the direction of the
propagation of the avalanche. [9]

b) By using the properties of the generating functions show that H1(x), the
generating function of π(s), satisfies the following equation,

H1(x) = 1− p + px [H1(x)]z .

[10]

c) Show that
π(s) = P(s).

[5]

d) Derive the equation for the probability S that a toppling event gives rise to an
infinite avalanche. [5]

e) Assume z = 2. Consider the following three possible values of the toppling
probability p: p = 0.4 (case A), p = 0.2 (case B) and p = 0.8 (case C). In which of
the cases above we do have S > 0? [6]
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Question 2. [45 marks]

The SIR model on complex networks.
Consider the SIR model on a complex network, where β is the rate at which a
susceptible individual in contact with an infected individual becomes infected, and µ
is the rate at which an infected individual becomes removed.

a) Show that the probability density function P(τ) of the time τ required for an
infected individual to become removed is given by

P(τ) = µe−µτ.

[8]

b) The transmissibility T is given by the probability that an infected node
transmits the infection to a nearest neighbour in the susceptible state. Show that
the transmissibility T can be written as:

T = 1−
∫

dτP(τ)e−βτ =
λ

1 + λ

where λ = β/µ. [8]

c) Map the SIR model on a network to the percolation process on the same
network, by identifying the transmissibility T of the SIR model with the
probability p that a random node is not damaged in the percolation transition.
Show that the value λc is given by

λc =
〈k〉

〈k2〉 − 2〈k〉 .

[6]

d) Evaluate the epidemic threshold for: a regular network of degree distribution
P(k) = δk,6 (case A), a regular network of degree distribution P(k) = δk,5 (case
B). [4]

e) Evaluate the epidemic threshold for: a Poisson network of average degree
〈k〉 = 6 (case C) and a Poisson network of average degree 〈k〉 = 5 (case D). [4]

f) Consider an uncorrelated scale-free network with power-law degree
distribution P(k) = Ck−γ, γ = 2.2 and k ∈ [1,

√
N]. Evaluate 〈k〉 and 〈k2〉 in the

continuous approximation. [10]

g) Consider a SIR epidemic spreading process on the scale-free network of point
f). What is the value of the epidemic threshold λc in the limit N → ∞ ? [5]
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Question 3. [20 marks]

Random walk
Consider an undirected network of N nodes formed by a single connected
component.
Indicate with i (or j or r) the generic node of the network with i = 1, 2, . . . , N.
Indicate with a the N × N adjacency matrix of the network.
Indicate with ki the degree of node i.
Assume that the random walks taking place on the network have a steady state.

a) Determine the steady state probability µi that asymptotically in time a random
walker is found on node i when:

i) the probability Pji that the random walker hops from node j to node i is
given by

Pji =
aji

k j
;

[5]

ii) the probability Pji that the random walker hops from node j to node i is
given by

Pji =
ajiki

∑N
r=1 krajr

;

[5]

iii) the probability Pji that the random walker hops from node j to node i is
given by

Pji =
aji(ki)

−β

∑N
r=1 ajr(kr)−β

,

where β = 5/2. [5]

b) Assume that the random walks defined in point a) take place on a random
uncorrelated network in which there are two nodes (node A and node B) of
degree respectivelly kA = 5 and kB = 2. Determine in which of the random
walks studied in point a) the probability that the random walker is on node A is
higher than the probability that it is on node B.
Provide your answer in the framework of the annealed approximation in which it is
allowed to make the substitution

aij →
kik j

∑N
r=1 kr

.

[5]

End of Paper.
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