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Question 1. [40 marks]
Link percolation of uncorrelated networks.
Consider an uncorrelated random network with degree distribution P (k) where the
links are randomly damaged.
Consider the following recursive algorithm to predict which nodes are in the giant
component of the network:

- A node is in the giant connected component if at least one of its links is not
damaged and reaches a node in the giant component.

- A node reached by following a link is in the giant component, if there is at
least one of its remaining links that is not damaged and that reaches a node
in the giant component.

Let S be the probability that a node is in the giant component.
Let S ′ be the probability a link is not initially damaged and reaches a node that is in
the giant component.
Let p denote the probability that a link is not initially damaged.
The brackets 〈. . .〉 indicate the average over the degree distribution P (k).

a) Show that S ′ satisfies the equation

S ′ = p

[
1−

∞∑
k=0

kP (k)

〈k〉
(1− S ′)k−1

]
.

[9]

b) Show that S satisfies the equation

S =

[
1−

∞∑
k=0

P (k)(1− S ′)k
]
.

[8]

c) Show that, in order to have a giant component in the network, i.e. S > 0, we
must have

p
〈k(k − 1)〉
〈k〉

> 1.

[10]

d) Calculate the percolation threshold pc for a network with degree distribution
P (k) = δk,5 where δx,y = 1 if x = y and otherwise δx,y = 0. [3]

e) Consider a scale-free network with degree distribution P (k) = ck−γ , with
γ = 3 and k ∈ [m,

√
N ]. Calculate 〈k〉 and 〈k2〉 in the continuous

approximation. Using these results evaluate percolation threshold pc of the
netwrk in the limit N →∞. [10]
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Question 2. [30 marks]
Robustness of uncorrelated networks to targeted attack of the high degree
nodes.
Consider an uncorrelated random network with degree distribution P (k).

- We initially damage a fraction f of nodes with highest degree.

- We indicate with kc(f) the highest degree of the nodes that are not initially
damaged.

- We indicate by S the probability that a node is in the giant component.

- We indicate by S ′ the probability that a link reaches a non damaged node of
degree k ≤ kc(f) that is in the giant component.

- The brackets 〈. . .〉 indicate the average over the degree distribution P (k).

a) Express f as a function of kc and of the degree distribution P (k). [5]

b) Given an infinite scale-free network with degree distribution P (k) = Ck−γ

with γ = 3 and k ≥ 1, using the continuous approximation, show that the
cutoff kc resulting from the initial attack of 1% of the nodes with highest
degree is kc(f) = 10. [10]

c) Show that S ′ satisfies the equation

S ′ =
∑
k

kP (k)

〈k〉
θ(kc(f)− k)

[
1− (1− S ′)k−1

]
,

where θ(x) = 1 if x ≥ 0 otherwise θ(x) = 0. [5]

d) Show that S satisfies the equation

S =
∑
k

P (k)θ(kc(f)− k)
[
1− (1− S ′)k

]
.

[5]

e) Show that in order to have a giant component in the network, i.e. S > 0 we
must have

〈k2θ(kc(f)− k)〉 − 〈kθ(kc(f)− k)〉
〈k〉

> 1.

[5]
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Question 3. [30 marks]
The SIS model: the annealed approximation
In the annealed approximation for the SIS model the dynamical equation for the
probability ρk that a node of degree k is infected is given by

dρk
dt

= −ρk + λk(1− ρk)Θ(λ),

where

Θ(λ) =
∑
k

k

〈k〉
P (k)ρk,

and λ indicates the infectivity of the epidemics.

a) Assuming self-consistently that the value of Θ(λ) is known, find the
stationary state of Eq. (1). [5]

b) Close the self-consistent argument showing that Θ(λ) satisfies

Θ(λ) = λ
∑
k

k

〈k〉
P (k)

kΘ(λ)

1 + λkΘ(λ)
.

[5]

c) Show that the Eq. (1) has a non trivial solution Θ(λ) > 0 if and only if

λ > λc =
〈k〉
〈k2〉

.

[10]

d) What is the epidemic threshold λc for power-law networks with power-law
exponent γ ∈ (2, 3]? [4]

e) Consider infinite scale-free network with power-law exponent γ = 2.5
(network A) and an infinite regular network of constant degree k = 5
(network B).
According to the annealed approximation, is it possible that the SIS
epidemics spreads in network A for values of the infectivity λ for which it
does not spread in network B? (Justify your answer). [3]

f) Consider an infinite regular network of constant degree k = 5 (network B)
and an infinite regular network of constant degree k = 3 (network C).
According to the annealed approximation, is it possible that the SIS
epidemics with given infectivty λ spreads in network C but does not spread
in network B ? (Justify your answer). [3]

End of Paper.
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