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Question 1. [39 marks]
Consider the graph G with N = 5 nodes described by the adjacency matrix:

A =


0 1 1 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0


(a) Draw the graph. Is the graph directed? Is it connected? How are these two

properties of the graph related to the properties of the adjacency matrix? [7]

(b) Find the nodes with the largest in-degree and the ones with the largest
out-degree. Write down the in-degree distribution pin

k and the out-degree
distribution pout

k . [6]

(c) State the definition of the α-centrality of a node of a graph. Find the
normalized α-centrality for all the nodes of graph G. [11]

(d) Derive a general expression for the number of directed triangles n∆ in terms
of the adjacency matrix of a directed graph, and calculate the number of
directed triangles in G. [7]

(e) Find the matrix of distances between nodes of the graph G. Find the matrix
of distances between the nodes of the graph G′ obtained from graph G by
considering all the arcs of G as undirected. [8]
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Question 2. [28 marks]
Consider the configuration model and construct an ensemble of random graphs
with N = 10000 nodes, power-law degree distribution p(k) = ck−γ , with c > 0 and
γ = 3, and where the smallest and largest degree in each graph is respectively equal
to kmin and kmax. In the following, treat the degree k as a real positive number, i.e.
work in the so-called continuous-k approximation.

(a) Determine the value of the normalisation constant c. [4]

(b) Express the first and second order moments of the degree distribution, 〈k〉
and 〈k2〉, as functions of kmin and kmax. [9]

(c) Write down the expression for the probability q(k) to find a node of degree k
by following a link of the graph (i.e the probability to arrive at a node of
degree k by selecting a link at random with uniform probability, and then
considering one of the two end nodes of the link). [4]

(d) What are the values of the average degree of a node, and of the average
degree of its neighbours in the case in which kmin = 1, kmax = 1000? [5]

(e) State the Molloy-Reed criterion. Do the graphs in the ensemble considered in
point (d) have a giant connected component? [6]

c© Queen Mary, University of London (2017) Turn Over



Page 4 MTHM750 / MTH750U / MTH750P (2017)

Question 3. [33 marks]
Consider the following model to grow graphs.
Given three positive integers N� 1, n0 = 10 and m = 2, and a real number a
(−m 6 a), the graph grows, starting at time t = 0 with a complete graph with n0
nodes, and by iteratively repeating at time t = 1,2,3, . . . ,N−n0, the two steps:

(1) A new node, labelled by the index n, being n = n0 + t, is added to the graph.
The node arrives together with m edges.

(2) The m edges link the new node to m different nodes already present in the
system. The probability Πn→i that a new edge links the new node n to node i (with
i = 1,2, · · · ,n−1) is:

Πn→i =
ki,t−1 +a

∑
n−1
l=1 (kl,t−1 +a)

where ki,t is the degree of node i at time t.

(a) Find an expression for the number of nodes, nt , and the number of links, lt ,
as a function of time t. [5]

(b) What is the final number of nodes and links in the graph, and what is the
average node degree 〈k〉, when N→ ∞ ? [6]

(c) Write down the rate equations of the model, i.e. the equations for nk,t , where
nk,t denotes the average number of nodes with degree k (k > m) present in the
graph at time t. The average, as usual, is performed over infinite realisations
of the growth process with the same parameters [7]

(d) Solve the rate equations in the case a = 0, and find the corresponding
stationary degree distribution pk. Notice that pk is the limit of pk,t = nk,t/nt
when t→ ∞. [10]

(e) Does the model produce scale-free networks in the case a = 0? If so, what is
the value of the degree exponent γ? [5]

End of Paper.
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