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Question 1 (34 marks).
Consider the two graphs G1 and G2, respectively described by the two adjacency
matrices:

A1 =


0 1 0 0 1
1 0 1 0 1
0 1 0 0 0
0 0 0 0 0
1 1 0 0 0

 , A2 =


0 1 0 0 1
0 0 1 0 0
0 0 0 1 1
0 1 0 0 0
1 0 0 0 0


(a) Are the two graphs directed or undirected? How is this related to the

properties of their adjacency matrix? Find the order and size (number of
links/arcs) of the two graphs, and draw them. [9]

(b) Are the two graphs connected? Find the degree distributions of the two
graphs. [8]

(c) Find the matrices of distances between nodes for the two graphs. [6]

(d) How are node closeness and node betweenness centrality defined? Evaluate
the closeness and betweenness centrality of node 3 in graph G2. Notice that
the normalised versions of centrality are required. [6]

(e) Give the definitions of node clustering coefficients and clustering coefficient
of a graph. Evaluate the node clustering coefficient of each of the nodes in
graph G1. What is the clustering coefficient of graph G1? [5]
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Question 2 (33 marks).
Given the ensemble of Erdős-Renyı́ (ER) random graphs GER

N,p with N = 1000
nodes, and where each couple of nodes is connected with a probability p, consider
the two cases p = 0.0005 and p = 0.01.

(a) Evaluate the expected number of edges K in a graph, (i.e. the average
number of edges in a graph, where the average is performed over the graphs
in the ensemble), in the two cases p = 0.0005 and p = 0.01. [6]

(b) Find an expression for the probability of finding a graph with K edges in the
ensemble with p = 0.01? What is the probability of finding an empty graph
(a graph with K = 0 edges) in the ensemble? [7]

(c) Find an expression for the node degree distribution pk of the graphs in the
two ensembles. Approximate the degree distribution by a Poisson
distribution, and find the values of averages, 〈k〉, and standard deviations, σk,
of node degrees in the two cases (averages are performed over graph nodes). [8]

(d) State the Molloy-Reed criterion. Do the networks in the two ensembles have
a giant connected component? [7]

(e) Find a general expression for n∆, the average number of triangles in GER
N,p as

a function of N and p. What is the average number of triangles in the two
ensembles considered in this question? [5]
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Question 3 (33 marks).
Consider the following model to grow graphs. Given three positive integers
N � 1, n0 and m (with m 6 n0), the graph grows, starting at time t = 0 with a
complete graph with n0 nodes, and by iteratively repeating at time
t = 1, 2, 3, . . . , N − n0, the two steps:

(1) A new node, labeled by the index n, being n = n0 + t, is added to the graph.
The node arrives together with m edges.

(2) The m edges link the new node to m different nodes already present in the
system with equal probability, i.e. the probability Πn→i that a new link connects the
new node n to node i (with i = 1, 2, · · · , n− 1) is:

Πn→i =
1

nt−1

where nt = n0 + t is the number of nodes in the graph at time t.

(a) Find an expression for the number of links, lt, as a function of time t. What
is the average node degree 〈k〉 when N →∞ ? [8]

(b) Write down the rate equations of the model, i.e. the equations for nk,t, where
nk,t denotes the average number of nodes with degree k (k > m) present in
the graph at time t. The average, as usual, is performed over infinite
realizations of the growth process with the same parameters N , n0 and m. [8]

(c) Solve the rate equations to find the stationary degree distribution pk. Notice
that pk is the limit of pk,t = nk,t/nt when t→∞. [6]

(d) Find the expression for the stationary degree distribution pk in the case of
large m. Does this model produce scale-free networks? [4]

(e) Write down and solve the differential equation governing the time evolution
of the average degree ki(t) of a node i in the so-called mean-field
approximation. [7]

End of Paper.
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