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Question 1 (33 marks).
A Cayley tree is an infinite tree in which each node is connected to z > 1 neigh-
bours, where z is called the coordination number. To construct a Cayley tree we can
start with an origin node and connect this to z nodes. Each of these nodes is then
connected to z − 1 new nodes, and this procedure is repeated infinitely often. An
example of a Cayley tree with coordination number z = 3 is shown in the figure
below.

(a) State the definitions of the clustering coefficient C and of the transitivity T of
a graph. What are the values of C and T in a Cayley tree with coordination
number z = 3? [9]

(b) Consider a Cayley tree with z = 4. How many nodes have respectively dis-
tance d = 1, 2, 3 from the origin? [3]

(c) For the general case of a Cayley tree with coordination number z > 1, find an
expression for Nd, the number of nodes at distance d from any given node, as
a function of d and z. [4]

(d) Consider the finite graph induced by a given node of a Cayley tree with coor-
dination number z > 1, and by all the nodes of distance less than or equal to
S from the first node. Find an expression for the number of nodes N in such
a graph as a function of S and z. [7]

(e) Consider the same graph as in part (d). In the case z = 3, find an expression
for the diameter D of such a graph as a function of the number of nodes N in
the graph. Does this graph exhibit small-world behaviour? [10]
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Question 2 (33 marks).
Consider a scale-free network with N nodes. Suppose the degree distribution is
p(k) = ck−γ with exponent γ > 1, and the smallest and largest degree are respec-
tively equal to kmin and kmax. In the following, work in the so-called continuous-k
approximation, i.e. treat the degree k as a real positive number.

(a) Determine the value of the normalisation constant c. [4]

(b) Find an expression for the average node degree, 〈k〉, and an expression for the
second order moment of the degree distribution, 〈k2〉. [8]

(c) What are the values of the average degree of a node, and of the average degree
of its neighbours in the case in which kmin = 1, kmax = 1000, and γ = 2.5? [6]

(d) Assume now that kmin = 1 and kmax = min(N1/(γ−1),
√
N). Find an expres-

sion for 〈k〉 and 〈k2〉 when N →∞. Consider separately the three following
cases: γ ∈ (1, 2], γ ∈ (2, 3], and γ > 3. [9]

(e) State the Molloy-Reed criterion. When γ ∈ (2, 3], does the network consid-
ered in part (d) have a giant component in the limit N →∞? [6]
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Question 3 (34 marks).
Consider the following model to grow graphs.
Given three positive integers N � 1, n0 = 5 and m = 3, and a positive real number
α, the graph grows, starting at time t = 0 with a complete graph with n0 nodes, and
by iteratively repeating at time t = 1, 2, 3, . . . , N − n0, the two steps:

(1) A new node, labeled by the index n, being n = n0 + t, is added to the graph.
The node arrives together with m edges.

(2) The m edges link the new node to m different nodes already present in the
system. The probability Πn→i that a new edge links the new node n to node i (with
i = 1, 2, · · · , n− 1) is:

Πn→i =
kαi,t−1∑n−1
l=1 k

α
l,t−1

where ki,t is the degree of node i at time t.

(a) Find an expression for the number of nodes, nt, and the number of links, lt,
as a function of time t. [5]

(b) What is the final number of nodes and links in the graph, and what is the
average node degree 〈k〉 when N →∞ ? [7]

(c) Write down the rate equations of the model, i.e. the equations for nk,t, where
nk,t denotes the average number of nodes with degree k (k > m) present in the
graph at time t. The average, as usual, is performed over infinite realizations
of the growth process with the same parameters N , n0, m and α. [6]

(d) Solve the rate equations, in the case α = 1, to find the stationary degree
distribution pk. Notice that pk is the limit of pk,t = nk,t/nt when t→∞. [11]

(e) For α = 1, does the model produce scale-free networks? If so, what is the
value of the degree exponent γ? [5]

End of Paper.
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