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Question 1. [22 marks] Let F and K be fields, with F 6 K.

(a) Define the degree [K : F ] of the field extension K : F . [2]

(b) State and prove the Short Tower Law for (finite) field extensions. [10]

(c) Write down the degrees of the following field extensions. We use ω to denote a
primitive cube root of unity; thus you can take ω = 1

2(−1+
√
−3).

(i) Q( 4
√

2) : Q;

(ii) Q( 5
√

11,
√

3) : Q;

(iii) Q( 3
√

7,ω 3
√

7) : Q. [3]

(d) Define what it means to say that F is the prime subfield of K. Prove that if this is the
case then F ∼= Fp(= Zp = Z/pZ) or F ∼=Q. [7]

Question 2. [32 marks] Let F and K be fields, with F 6 K.

(a) Define the notion of a Euclidean domain. [4]

(b) Indicate briefly why the polynomial ring F [x] is Euclidean. [2]

(c) Let f (x) ∈ F [x], and let λ ∈ F . Prove that f (x) is divisible by x−λ (in F [x]) if and only
if f (λ ) = 0. [4]

(d) Let F 6 K be fields. Let f (x),g(x) ∈ F [x], and let h(x) be a g.c.d. of f (x) and g(x) in
F [x]. Prove that h(x) is also a g.c.d. of f (x) and g(x) in K[x]. [6]

(e) Let f (x) ∈ Z[x] be the product of two non-constant polynomials in Q[x]. Prove that it is
the product of two non-constant polynomials in Z[x]. [8]

(f) State Eisenstein’s Irreducibility Criterion for integer polynomials. [4]

(g) Prove that x3−4x+2 and x3− x−1 are irreducible over Q. [4]
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Question 3. [22 marks] In this question, K : F is a field extension and f (x) ∈ F [x].

(a) Define what it means for K to be a splitting field for f (x) over F . [4]

(b) Prove that if K is a splitting field for f (x) over F then [K : F ] is finite. [4]

(c) Define what it means for K : F to be normal. [4]

(d) Prove that if K : F is finite and normal then K is a splitting field over F for some
f (x) ∈ F [x]. [6]

(e) Give examples (one of each, without proof) of finite extensions of Q that are

(i) normal; [2]

(ii) not normal. [2]

Question 4. [24 marks]

(a) State the Fundamental Theorem of Galois Theory. [8]

(b) Let L be a splitting field over Q for x4−7. Compute the Galois groups G = Gal(L : Q),
of L over Q, and Gal(L : Q(

√
7)). (You can take L to be the subfield of C with this

property.) [8]

(c) Choose two subgroups of G = Gal(L : Q) other than G, the trivial subgroup and any
subgroup having fixed field Q(

√
7). For each of your chosen subgroups H of G, give

the fixed field of H, and state whether Fix(H) : Q is a normal extension. [8]

End of Paper.
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