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Question 1. [30 marks] Let L and K be two fields with L > K.

(a) Show that L is a vector space over K. [4]

(b) Define the degree [L : K] of L over K. [2]

(c) What does it mean for α ∈ L to be algebraic over K, and what does it mean
for α to be transcendental over K? [3]

(d) What does it mean for a field extension L : K to be (i) finite; and (ii)
algebraic? Show that every finite field extension is algebraic. [5]

(e) Suppose α is algebraic over K. Define the minimal polynomial of α over K. [3]

(f) Suppose α is algebraic over K, and has minimal polynomial m(X)(∈ K[X ])
over K.

(i) Prove that m(X) is irreducible over K.

(ii) State a relationship between the degree of m(X) and the degree of the
field extension K(α) : K.

(iii) Show that if f (X) ∈ K[X ] satisfies f (α) = 0 then m(X) | f (X) (in
K[X ]). [8]

(g) State the (Short) Tower Law for (finite) field extensions. [2]

(h) Write down (without proof) bases for F2(t,ω) over

(i) F2(t3);

(ii) F2(t);

(iii) F2(t3,ω).

Here, t is transcendental over F2 and ω is an element (not in F2) satisfying
ω2 +ω +1 = 0. Note that F2(t,ω) = F2(t3)[t,ω]. [3]
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Question 2. [20 marks] Let K be a field in which 2 6= 0, and let D ∈ K be a
non-square in K. Let S := {λ 2 : λ ∈ K } denote the set of squares in K.

(a) Give, with proof, a condition that λ ∈ K \S be a square in K(
√

D). [4]

(b) Prove that Q(
√

2,
√

5) has degree 4 over Q. [You may assume that 2, 5 and
10 are non-squares in Q.] [4]

(c) Prove that Q(
√

2,
√

5) = Q(
√

2+
√

5), and find the minimal polynomial for√
2+
√

5 over Q. [6]

(d) Prove that Q(
√

2) and Q(
√

5) are not isomorphic (as fields). [4]

(e) Write down an isomorphism from F2(t) to its proper subfield F2(t2) (where t
is transcendental over F2). [2]

Question 3. [20 marks] Let K be a field.

(a) Define the formal derivative D f for any f = f (X) ∈ K[X ]. [3]

(b) Prove the following properties of the operator D:

(i) D( f +g) = D f +Dg,

(ii) D( f g) = f (Dg)+(D f )g, and

(iii) D(λ f ) = λ (D f ),

for all f ,g ∈ K[X ] and λ ∈ K. [4]

(c) Let L be a splitting field over K for f . Prove that f has a multiple root in L if
and only both f and D f are divisible by some non-constant polynomial in
L[X ]. [8]

(d) Show that if K has characteristic 0, then D f = 0 if and only if f is constant. [3]

(e) State a necessary and sufficient condition for D f = 0 in the case where K has
characteristic p, with p > 0. [2]
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Question 4. [10 marks] Let K be a finite field.

(a) Characterise, up to isomorphism, the fields which can arise as the prime
subfield of K. [2]

(b) Briefly explain why K must have prime power order. [2]

(c) Prove that the multiplicative group of K is cyclic. [You may assume that each
nonzero element x of K satisfies xq−1−1 = 0, where K has size q.] [6]

Question 5. [20 marks]

(a) State the Fundamental Theorem of Galois Theory. [6]

The polynomial f (X) := X3 +3X−2 is irreducible over Q. Its unique real root is

α = 3
√

1+
√

2+ 3
√

1−
√

2,

and its other two complex roots are

β =−1
2α + 1

4

√
−6(α2 +α +2) and γ =−1

2α− 1
4

√
−6(α2 +α +2).

In what follows, you should express field elements and subfields in terms of α,β ,γ
and
√
−6.

(b) Compute the Galois group G = Gal(L : Q), of L over Q, where L is a splitting
field for f over Q. (We can take L to be the subfield of C with this property.) [6]

(c) Choose two subgroups of G = Gal(L : Q) other than G and the trivial
subgroup. For each of your chosen subgroups H of G, give the fixed field of
H, and state whether Fix(H) : Q is a normal extension. [8]

End of Paper.
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