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Question 1. Suppose that K and L are fields, and K ⊆ L.

(a) Show that L is a vector space over K. [4]

(b) What does it mean to say that K is the prime field of L? Show that, if this
is the case, then K is isomorphic to Zp(= Z/pZ) or Q. [6]

(c) Define the degree [L : K] of L over K. [2]

(d) Suppose M is a field containing L, and finite-dimensional over K. Prove that
[M : K] = [M : L][L : K]. [5]

(e) Write down bases for Q( 3
√

2,
√

5) over

(i) Q;

(ii) Q(
√

5);

(iii) Q( 3
√

2).

[3]

Question 2. Suppose L : K is a field extension, and α ∈ L.

(a) What does it mean for α to be algebraic over K? [2]

(b) If α is algebraic over K, define the minimal polynomial m(x) for α over K. [4]

(c) Prove that m(x) is irreducible over K. [4]

(d) Prove that if f(x) ∈ K[x] satisfies f(α) = 0, then m(x) divides f(x). [4]

(e) Let α = (1 + i)/
√

2 ∈ C.

(i) Determine the minimal polynomial for α over R;

(ii) Determine the minimal polynomial for α over Q.

[6]

Question 3. Let L : K be a field extension, and let f(x) ∈ K[x].

(a) What does it mean to say that L is a splitting field for f(x) over K? [4]

(b) Prove that if deg(f(x)) = n then there is a splitting field M for f(x) over K,
with [M : K] ≤ n!. [8]

(c) What does it mean to say that L : K is normal? [4]

(d) Give, with brief justification, one example each of finite extensions of Q which
are

(i) normal; [2]

(ii) not normal. [2]
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Question 4. Let p be a prime number, and n a positive integer. Let Fp = Z/pZ
denote the field of order p.

(a) Prove that every field of order pn is a splitting field for Xpn −X over Fp.
[You are not required to prove the existence of such a field.] [4]

(b) List the monic irreducible polynomials of degree 2 over F3. Briefly explain
why your list is complete. [6]

(c) Hence, or otherwise, factorize X9 + 2X into irreducibles over F3. [4]

(d) Explain briefly a construction of a field K of order 9. Find an element α ∈ K
which is a generator for the multiplicative group of non-zero elements of K.
What is the minimal polynomial for α over F3? [6]

Question 5. (a) State the Fundamental Theorem of Galois Theory. [6]

(b) Compute the Galois group G of L : Q, where L is a splitting field for X4 − 3
over Q. [6]

(c) Choose two subgroups of G = Gal(L : Q), other than G and the trivial
subgroup. For each of your chosen subgroups H of G, give the fixed field of
H, and state whether or not Fix(H) : Q is a normal extension. [8]

End of Paper.
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