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Question 1 (30 marks) Let K > F be a field extension.

(a) What does it mean for α ∈ K to be algebraic over F , and what does it mean
for α to be transcendental over F? [3]

(b) Suppose α is algebraic over F . Define the minimal polynomial of α over F . [3]

(c) Suppose α is algebraic over F , and has minimal polynomial m(X)(∈ F [X ])
over F . Prove that m(X) is irreducible over F . State a relationship between
the degree of m(X) and the degree of the field extension F(α) : F . Show that
if f (X) ∈ F [X ] satisfies f (α) = 0 then m(X) | f (X) (in F [X ]). [9]

(d) State and prove the Tower Law for (finite) field extensions. [9]

(e) Deduce that if α and β (both in K) are algebraic over F then so are α +β and
αβ . [3]

(f) Prove that 3
√

π is algebraic over Q(π) but transcendental over Q. [You may
assume Lindemann’s theorem that π is transcendental over Q.] [3]

Question 2 (20 marks)

(a) Let K > F (or K : F) be an algebraic field extension. Define what it means for
this field extension to be:

(i) normal; [3]

(ii) separable. [3]

(b) Give examples, with brief justifications where necessary, of field extensions
that are:

(i) separable and normal; [2]

(ii) separable and not normal; [4]

(iii) inseparable and normal. [4]

(c) Let F = Q, K = Q(
√

6) and L = Q( 4
√

6). Determine the normality or not of
each of the extensions K : F , L : K and L : F , whose degrees are 2, 2 and 4
respectively. [4]

Question 3 (5 marks)

(a) Write down without proof all subfields of F4096, indicating clearly the con-
tainments between them. [Recall that 4096 = 212.] [3]

(b) Use this information to calculate the number of irreducible polynomials of
degree 12 over F2. [2]
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Question 4 (30 marks) Let f (X) = X3− 4X + 2 be a polynomial over Q, and let
α , β and γ be its three complex roots. Let K := Q(α,β ,γ) be the splitting field of
f over Q.

(a) Factorise X3−4X +2 into irreducible factors over K, in terms of α , β and γ . [1]

(b) Write down the value of α +β + γ . [1]

(c) Determine (with justification) the number of real roots of f . [3]

(d) Prove that f is irreducible (over Q). [2]

(e) Determine the degree of the extension K : Q. [Hint: You may assume that
(α−β )(β − γ)(γ−α) =±

√
148 (the sign depends on the order of α,β ,γ).] [5]

(f) Calculate the Galois group Gal(K : Q). [5]

(g) List all subfields of K and the containments between them. [You do not need
to determine the normality or separability of the field extensions involved.] [8]

(h) Factorise X3−4X +2 into irreducible factors over Q(α). The coëfficients of
your factors should be polynomials in α and not involve β or γ . [5]

Question 5 (15 marks) Let F be a field of characteristic 0, and let n ∈ Z+. We
construct a tower F 6 K 6 L of fields as follows. Define K to be the splitting field
over F for the polynomial Xn−1, and let ζ ∈ K be a primitive nth root of 1 (so that
ζ m 6= 1 for 0 < m < n). Now pick 0 6= α ∈ K, and let L be the splitting field over K
for the polynomial Xn−α . Let β ∈ L be a root of Xn−α .

(a) Prove that K = F(ζ ). [3]

(b) Write down all the roots of Xn−α . Deduce that L = K(β ). [3]

(c) Prove that Gal(K : F) and Gal(L : K) are both abelian. [You may assume that
they are both groups.] [9]
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