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Question 1. [28 marks] (One-dimensional systems)

(a) Consider the following one-dimensional system

ẋ = x2 − 1.

Find the fixed points and determine their stability via linear stability analysis. [4]

(b) Plot the phase portrait of the system in Part (a), indicating the fixed points and
their type. [3]

(c) Using your answer to Part (b), sketch the graph of the solution x(t) for various
initial conditions. [4]

(d) Recall that the solution to the Logistic equation Ṅ = rN(1 − N/K), where r and
K are parameters, is given by

N(t) =
KN0ert

K + N0(ert − 1)
,

where N0 = N(0). Using this, or otherwise, find a solution x(t) to the system in
Part (a) in terms of x0 = x(0). [5]

(e) Using the form of x(t) from Part (d), show that for an initial condition x0 > 1
the solution x(t) ‘blows-up’ in finite time, i.e. x(t) reaches ∞ for some t < ∞. [4]

(f) Find and sketch the potential for each of the following dynamical systems.
Indicate the fixed points on each sketch.

(i) ẋ = x3 − x [4]

(ii) ẋ = xe−x2
. [4]
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Question 2. [28 marks] (Bifurcations) Consider the following dynamical system

ẋ = xr − x tan(x), −π

2
< x <

π

2
,

which has an r-independent fixed point x∗ = 0 for all r.

(a) Find any other fixed points in terms of the control parameter r. [2]

(b) Find the bifurcation point (x∗, rc), Taylor expand about this point to get the
normal form and identify the type of bifurcation. [8]

(c) Using linear stability analysis find the stability of the trivial fixed point x∗ = 0
for the parameter ranges r < rc and r > rc. [4]

(d) Using the results from Parts (a), (b) and (c), or otherwise, sketch

(i) The phase portraits for r < rc, r = rc and r > rc. [6]

(ii) The corresponding bifurcation diagram. [4]

(e) Suppose we add an imperfection parameter h, so that our system becomes

ẋ = h + xr − x tan(x), −π

2
< x <

π

2
.

Show that for fixed h > 0 no bifurcation occurs as r is varied. [4]
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Question 3. [44 marks] (Two-dimensional systems)

(a) Classify the fixed point x∗ = (0, 0) for each of the following two-dimensional
linear systems and state, with justification, whether x∗ is either attracting,
Liapunov stable, asymptotically stable, or neither.

(i) ẋ = x + 3y, ẏ = 1 + 2y. [4]

(ii) ẋ = 4x + y, ẏ = −3x. [4]

(iii) ẋ = −2x, ẏ = x − 2y. [4]

(b) Consider the following two-dimensional system

ẋ = x3 − x , ẏ = y + 1 − ex .

(i) Identify the fixed points and classify the type of each fixed point by
performing a linear stability analysis. [6]

(ii) Find equations for all the nullclines; sketch these in the phase plane,
indicating the direction of motion along each nullcline. [6]

(iii) Using Parts (i) and (ii) sketch the entire phase portrait, indicating typical
trajectories and the direction of motion along these trajectories. [6]

(c) Consider the following conservative system

ẍ = rx − ex =: −dV(x)
dx

, r > 0 . (1)

(i) Find an expression for V(x) and show that for 0 < r < e the potential V(x)
has no stationary points and for r > e the potential V(x) has two
stationary points. [4]

(ii) Sketch the graph of V(x) when 0 < r < e and r > e. [3]

(iii) Perform a transformation to turn the second-order equation in (1) into a
system of two coupled first-order differential equations and find the
associated conserved quantity. [2]

(iv) Using Parts (i), (ii) and (iii) sketch the phase portrait when 0 < r < e and
r > e, indicating typical trajectories, the direction of motion along these
trajectories and, where appropriate, any homoclinic orbits. [5]

End of Paper.
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