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Question 1. [30 marks] One-dimensional systems

a) Consider the differential equation

ẋ = 1− exp(−x) .

Compute all fixed points of this equation. For each fixed point compute its
stability using a linear stability analysis. [3]

b) Sketch the phase portrait and draw a diagram in which you show
qualitatively how the solutions x(t) of this differential equation depend on
time t. The latter diagram should display all the fixed point solutions and
their stability properties. [4]

c) Compute a potential for this differential equation and sketch the potential in
a diagram. [5]

d) Solve the above differential equation for the initial value x(0) = ln2. [6]

e) Consider the following two functions:

(i) x(t) = sin(1+ t) , (ii) x(t) =
√

2exp(2t)−1 .

State in each case whether the respective function x(t) is the solution of an
(autonomous) differential equation of the form ẋ = f (x). Justify your answer. [6]

f) If the respective function x(t) in (e) is a solution of a differential equation
ẋ = f (x), derive the corresponding equation by calculating an expression for
the right hand side f (x). [6]

Question 2. [34 marks] Bifurcations

Consider the differential equation

ẋ = rx− x2 + x4 ,

which depends on a real parameter r.

a) Compute the range of parameter values for which the trivial fixed point
x∗ = 0 is linearly stable and the range of parameter values for which it is
linearly unstable. If you find bifurcations of the trivial fixed point, compute
the parameter value of the bifurcation point and state with a reason the type
of the bifurcation. [8]

b) Compute the parameter values r = r∗ and the points x = x∗ in phase space
where nontrivial fixed points, x∗ 6= 0, undergo a saddle node bifurcation. [8]

c) For each saddle node bifurcation computed in part b) decide whether the pair
of fixed points is generated for r < r∗ or r > r∗. [10]

d) Using the results from parts a) - c), or otherwise, sketch the bifurcation
diagram of the differential equation. Your diagram should indicate the
stability of each fixed point. The diagram should also contain phase portraits
for parameter values where phase portraits qualitatively differ. [8]
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Question 3. [36 marks] Two-dimensional systems

Consider the system of two differential equations

ẋ = y , ẏ =−x+ x3− y .

a) Compute the fixed points of this two dimensional dynamical system. For
each fixed point perform a linear stability analysis and classify the type of
fixed point. [6]

b) Is this system conservative? Is it a gradient system? Is it reversible? State
reasons and compute, if appropriate, the potential. [12]

c) Sketch the flow in the phase plane in a small neighbourhood of each fixed
point. [4]

d) Construct a nullcline diagram for this system as follows:

(i) Compute the nullclines of the system of differential equations.

(ii) Sketch the nullclines in the phase plane.

(iii) The nullclines partition the phase plane into different regions. For each
region, and on each nullcline, indicate the direction of the flow. [8]

e) Using the results from parts c) - d), or otherwise, sketch the full phase
portrait of the two dimensional system. The phase portrait should be
consistent with the diagram produced in part d). If the system has a stable
fixed point then shade its basin of attraction. [6]

End of Paper.
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