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Question 1.

(a) Sketch the phase portrait of a flow on the circle, which has exactly three fixed
points, one being linearly stable, one being linearly unstable, and one being
marginal. Describe the basin of the stable fixed point. [10]

(b) Sketch a differentiable function f such that the differential equation
θ̇ = f(θ) generates a flow satisfying the conditions of part a), and write down
an explicit formula for such a function f . [6]

(c) Does your differential equation θ̇ = f(θ) have a potential V (θ)? Compute
such a potential, or state a reason why a potential does not exist. [6]

(d) Consider the differential equation θ̇ = f(θ)2. What is the number of fixed
points of this dynamical system? What are the linear stability properties of
each fixed point? Describe the phase portrait. [8]

Question 2. Consider the system of differential equations

ẋ = x(1− x2 − y2)− σy, ẏ = y(1− x2 − y2) + σx− h

where h ≥ 0 and σ ≥ 0 denote the parameters of the system.

(a) For the case where h = 0 and σ > 0, show that introducing polar coordinates
(r, φ), where x = r cosφ and y = r sinφ, transforms the system to the form

ṙ = r(1− r2) , φ̇ = σ .

[6]

(b) Using the above polar form, or otherwise, show that the system has one fixed
point and one limit cycle, and determine the stability of these. [6]

(c) Consider the general case h ≥ 0 and σ ≥ 0. Compute the parameter values
for which the equations of motion show saddle-node bifurcations. [12]

(d) For h ≥ 0 and σ ≥ 0 compute the parameter values for which the equations
of motion show Hopf bifurcations. Sketch the bifurcation lines of the
saddle-node and of the Hopf bifurcations in a diagram. [12]
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Question 3. Consider the system of differential equations

ẋ = x(1− 2x2 − y2)− y(1 + x), ẏ = y(1− 2x2 − y2) + 2x(1 + x) .

(a) Compute the fixed points of the system of differential equations. For each
fixed point determine the stability using linear stability analysis. [8]

(b) Consider the quantity L = (1− 2x2 − y2)2. Show that dL/dt ≤ 0. [6]

(c) Using the results of part b), or otherwise, show that the system of equations
has a limit cycle. Is the limit cycle stable or unstable? Give a reason for your
answer. [12]

(d) Using the results of part a) and c), or otherwise, sketch the phase portrait of
the system of differential equations. [8]

End of Paper.
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