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Question 1 [32 marks]

(Recall that
d arctan(x)

dx
=

1

1 + x2
.)

Consider the differential equation on the line

ẋ = v(x) = λx + µ arctan(x) (1)

where λ and µ are real parameters, with µ > 0.

(a) Show that the point 0 is a fixed point. Determine the parameter values for
which 0 is a stable fixed point. Determine the bifurcation curve in the (λ, µ)-
plane which marks the boundary of stability. [6 marks]

(b) Determine the region of parameters where there are two additional fixed points
±x∗, where x∗ > 0. Justify your answer. [6 marks]

(c) Use a Taylor approximation to compute an approximate vector field ṽ such
that

v(x) = ṽ(x) + O(x4) as x → 0.

Hence determine an approximate expression for the fixed point x∗ defined in
part (b). [8 marks]

(d) Now fix µ and vary λ. What type of bifurcation takes place at the critical
parameter? Identify its normal form by verifying the appropriate transversality
conditions. [6 marks]

(e) For fixed µ, determine the linear change of co-ordinates that brings the ap-
proximate system ẋ = ṽ(x) of part (c) to its normal form at bifurcation; hence
sketch the bifurcation diagram in the (λ, x)-plane. [6 marks]

Question 2 [26 marks]
Consider the dynamical system in the plane:

ẋ =ay (2)

ẏ =y + x(1 − x)

where a is a real parameter, with a > 0.

(a) Determine all fixed points and their Jacobian matrices, as functions of the
parameter a. [6 marks]

(b) For each fixed point, determine the linear stability, the eigenvectors and the
Jordan canonical form of the Jacobian, as a function of a. [12 marks]

(c) Let a = 2 in equation (2). Draw the nullclines and hence sketch the phase
portrait. Indicate the stable and unstable manifold for any saddles. [8 marks]
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Question 3 [20 marks]
Consider the second-order differential equation on the line

ẍ + 3x2 = 1. (3)

(a) Transform equation (3) into a system of two first-order differential equations
in the plane. [2 marks]

(b) Show that this system is reversible. Write the equation of the energy, and
verify explicitly that it is a constant of the motion. [8 marks]

(c) Sketch the phase portrait, as level sets of the energy; show that this system
has a homoclinic orbit and write an equation for this orbit. [10 marks]

Question 4 [22 marks]

(a) Consider the planar dynamical system, in polar coordinates

ṙ = f(r), θ̇ = 1 (4)

where f : R
+ → R is a differentiable function.

i) Give an example of a function f for which the system (4) has:

1) a single limit cycle, which is neither stable nor unstable;
2) infinitely many limit cycles.

Justify your answers; in 2) comment on the stability of the cycles. [8 marks]

ii) Prove (from the definition) that for all initial conditions z0 = (r0, θ0) with
r0 6= 0, the ω-limit set ω(z0) of the system (4) with f(r) = r(1− r) is the
unit circle r = 1. [8 marks]

(b) For all initial conditions z0 = (r0, θ0) list explicitly the ω-limit sets ω(z0) of
the system

ṙ = r(1 − r); θ̇ = 1 + cos(2θ) + (r − 1)2.

Justify your answers. Does this system have homoclinic/heteroclinic orbits?
(No formal proof is required.) [6 marks]

End of Paper
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