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Throughout this exam, I denotes the closed unit interval [0, 1].

Question 1 [40 marks].

(a) What does it mean to say that a map f : I → I is a Markov map? [3]

(b) How is the transition matrix for a Markov map defined? [3]

(c) What does it mean to say that a Markov map is expanding? [3]

(d) Give an example of a Markov map that is not expanding. [3]

(e) Give an example of any expanding Markov map f whose transition matrix is
equal to 

0 1 1 1
0 0 1 1
1 1 0 0
1 0 0 0

 ,

being careful to specify the associated partition. Sketch the graph of f , being
careful to mark any fixed points of f in your sketch, together with the numerical
values of these fixed points. [5]

(f) Compute the topological entropy of your map f from (e) above. [5]

(g) Suppose that f : I → I is continuous, and a ∈ (0, 1). Suppose that f is a
piecewise-linear Markov map with Markov partition {I0, I1}, where I0 = [0, a],
I1 = [a, 1]. Show that if the corresponding transition matrix is(

1 1
1 0

)
then f is expanding. [5]

(h) For a map f as in (g) above, how many period-3 points are there? Determine all
of these period-3 points. [5]

(i) For a map f as in (g) above, how many period-10 points are there? [5]

(j) Let N30 denote the number of period-30 points for a map f as in (g) above.
Determine the integer k such that 10k < N30 < 10k+1. [3]
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Question 2 [30 marks]. Define f : I → I by

f(x) =

{√
2x2 + x if x ∈ [0, 1/2)√
2x2 − x if x ∈ [1/2, 1] .

(a) Sketch the graph of f , show that f is a Markov map with respect to the partition
{[0, 1/2], [1/2, 1]}, and show that f is expanding. [10]

(b) Determine all the period-2 points of f . [5]

(c) Determine formulae for the inverse branches ϕ0 : I → [0, 1/2] and ϕ1 : I → [1/2, 1]
of f , and compute formulae for their derivatives ϕ′0 and ϕ′1. [5]

(d) Write down an explicit form of the Frobenius-Perron equation for f , and use this
to determine the invariant density % for f , assuming that % is of the form
%(x) = ax+ b for some a, b ∈ R. [5]

(e) Assuming ergodicity, compute the value limN→∞
1
N

∑N−1
n=0 f

n(x) for
Lebesgue-typical points x ∈ I. [5]
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Question 3 [30 marks]. Suppose f : I → I is defined by

f(x) =


4x if 0 ≤ x ≤ 1/4,

2x− 1/4 if 1/4 < x ≤ 1/2,

2x− 1 if 1/2 < x ≤ 3/4,

3x− 2 if 3/4 < x ≤ 1.

(a) Sketch the graph of f , show that f is a Markov map with respect to the partition
{[0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1]}, and write down the corresponding
transition matrix. [10]

(b) Determine the transfer matrix for f . Use the transfer matrix to determine the
invariant density for f , and sketch the graph of this invariant density. [10]

(c) Assuming ergodicity, determine whether or not there exists a sub-interval of
length 1/2 that is entered with frequency > 3/4 by Lebesgue-typical orbits
(i.e. determine whether or not there exists c such that

lim
N→∞

1

N

N−1∑
n=0

χ[c,c+1/2](f
n(x)) > 3/4

for Lebesgue-typical points x ∈ I). Justify your answer. [5]

(d) Assuming ergodicity, if c, l ≥ 0 are such that [c, c+ l] is a sub-interval of I then let
β(c, l) = limN→∞

1
N

∑N−1
n=0 χ[c,c+l](f

n(x)) for Lebesgue-typical points x ∈ I, and let
α(l) = sup{β(c, l) : [c, c+ l] ⊆ I} for all l ∈ [0, 1].

Find a formula for the function α : [0, 1]→ R, and sketch the graph of α. [5]

End of Paper.
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