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Question 1 (30 marks).
Consider the map fβ : [0, 1]→ [0, 1] defined by

fβ(x) =

{ x
β

if 0 ≤ x ≤ β
1−x
1−β if β < x ≤ 1

.

where 0 < β < 1.

(a) Find the fixed points of the map and determine their linear stability. [6]

(b) Find the two invertible branches of the map and write down the two inverse
functions. [6]

(c) Write down the Frobenius-Perron equation of the map. [7]

(d) Find the invariant density of the map. [6]

(e) Assuming that the density ρ(x) gives rise to an ergodic invariant measure,
compute the probability that the points of a trajectory are in the interval [β, 1]. [5]
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Question 2 (35 marks).
Consider the map f : [0, 1]→ [0, 1] defined by

f(x) =


2x if 0 ≤ x < 1/2
2x− 1 if 1/2 ≤ x < 3/4
2x− 3/2 if 3/4 ≤ x ≤ 1

(a) Sketch the graph of the map f , and show that the map is piecewise linear. [7]

(b) Show that the partition {I0, I1, I2} with I0 = [0, 1/2], I1 = [1/2, 3/4] and
I2 = [3/4, 1] is a Markov partition, and write down the corresponding topo-
logical transition matrix. [5]

(c) Show that the map f is expanding. Find the number Mp of admissible peri-
odic symbol sequences of period p = 1, p = 2, and p = 5. Determine all
admissible periodic symbol sequences of period p = 1 and p = 2. Do they
correspond to periodic points, respectively of period p = 1 and p = 2, of the
map? Justify your answer. [11]

(d) State the definition of the topological entropy of a map, and explain why the
topological entropy is a measure of the complexity of a system. Evaluate the
topological entropy of the map f . [6]

(e) Determine the transfer matrix of the map f and compute its invariant density.
Assuming ergodicity, evaluate the Lyapunov exponent of the map f . [7]
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Question 3 (35 marks).
Consider a network of N = 4 fully-coupled logistic equations described by the
equations:

ẋi(t) = xi(t)(r − xi(t)) + σ
N∑
j=1

(xi(t)− xj(t)) i = 1, . . . , N

where xi(t) denotes the state (population) of node i, r ∈ R+ is the so-called carrying
capacity of each node, and σ ∈ R denotes the coupling strength.

(a) Rewrite the equations in terms of the adjacency matrix Aij of the underlying
graph. Rewrite the equations in terms of the Laplacian matrix Gij of the
underlying graph. [8]

(b) Determine the time-independent synchronised states. Compute the master
stability function for the time-independent synchronised states. [8]

(c) For the non-trivial time-independent synchronised state, find the values of σ
such that the state is transversely stable. [6]

(d) How many different interaction networks can you obtain by removing two
links from the original graph? Label the nodes, and write the corresponding
adjacency matrices, and the degree distributions of the resulting graphs. [6]

(e) For the non-trivial time-independent synchronised state, find the values of σ
such that the state is transversely stable on the new graphs. Do things change
with respect to the case considered in (c)? [7]

End of Paper.
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