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Question 1 Consider the map f : [0, 1]→ [0, 1] defined by

f(x) =


x+ 2/3 if 0 ≤ x ≤ 1/3
−3x+ 2 if 1/3 ≤ x ≤ 2/3
2(x− 2/3) if 2/3 ≤ x ≤ 1

.

a) Sketch the graph of the map. Show that the partition {I0, I1, I2} with I0 =
[0, 1/3], I1 = [1/3, 2/3] and I2 = [2/3, 1] is a Markov partition, and write down
the corresponding topological transition matrix. [6 marks]

b) Show that the map is expanding. Show that the map is a piecewise linear
Markov map. [5 marks]

c) Determine all admissible periodic symbol sequences of period p = 2. Compute
the number Np of periodic points of period p = 1, 2, 3 of the map, and the
asymptotic behavior of Np for large p. [11 marks]

d) Determine the transfer matrix of the map. Compute the invariant density.

[8 marks]

e) Assuming ergodicity, compute the Lyapunov exponent of the map. Explain
why ergodicity is important. [5 marks]

Question 2 Consider the map f : [−1, 1]→ [−1, 1] defined by f(x) = 1− 2x2.

a) Write down the Frobenius-Perron equation of the map. [12 marks]

b) Which one of the two functions:

ρ(x) = C
1√

1− x2
and ρ(x) = C(1 + x2)

is a solution of the Frobenius-Perron equation of the map. [6 marks]

c) In the case in which ρ(x) is a solution of the Frobenius-Perron equation, deter-
mine the normalisation constant C such that ρ is the density of a probability
measure on [−1, 1]. [7 marks]

d) Assuming that the density ρ(x) gives rise to an ergodic invariant measure,
compute the probability that the points of a trajectory are in the interval
[−1, 0]. [5 marks]
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Question 3 Consider the following equations of motion:

ẋi(t) = f(xi(t)) + σ
∑
j

Gijh(xj(t))

describing the dynamics of a coupled network. Here, xi(t) denotes the state at node
i, f(x) = 4x(1 − x) governs the local dynamics at a node, h(x) = x determines
the coupling, σ ∈ R denotes the coupling strength, and Gij the Laplacian of the
underlying graph. The network consists of N = 4 nodes organized in the following
configuration:

1

2

3

4

a) Compute the degree distribution, the average distance between nodes, and the
diameter of the graph. [8 marks]

b) Compute the master stability function for each of the time-independent syn-
chronised states. [11 marks]

c) Find the eigenvalues of the Laplacian of the network. [8 marks]

d) For each synchronised state find the values of σ such that the state is trans-
versely stable. [8 marks]

End of Paper
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