Main Examination period 2023 - January - Semester A

MTH742P: Advanced Combinatorics (resit paper)

Duration: 3 hours

The exam is intended to be completed within $\mathbf{3}$ hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best FOUR questions answered will be counted.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: Robert Johnson and John Bray

In this paper graphs do not have loops or multiple edges.

Question 1 [25 marks].

(a) Define the Turán density $\pi(F)$ of a finite graph F.
(b) State (without proof) a useful formula relating $\pi(F)$ to another graph parameter of F, defining any terms you use.
(c) For $t \geqslant 2$, let A_{t} be the graph on t^{2} vertices defined by

- $V\left(A_{t}\right)=\{(x, y): x, y \in\{1,2, \ldots, t\}\}$
- Distinct vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are adjacent if and only if $x_{1}=x_{2}$ or $y_{1}=y_{2}$.

Use part (b) to determine $\pi\left(A_{t}\right)$ for all $t \geqslant 2$.
(d) For $t \geqslant 2$, let B_{t} be the graph on t^{2} vertices defined by

- $V\left(B_{t}\right)=\{(x, y): x, y \in\{1,2, \ldots, t\}\}$
- $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ adjacent if and only if either (i) $x_{1}=x_{2}$ and $\left|y_{1}-y_{2}\right|=1$ or (ii) $y_{1}=y_{2}$ and $\left|x_{1}-x_{2}\right|=1$.

Use part (b) to determine $\pi\left(B_{t}\right)$ for all $t \geqslant 2$.
(e) For each of the following conditions either give an example of a finite graph F satisying it or explain why no such graph exists:
(i) $\pi(F)=\frac{\sqrt{2}}{2}$
(ii) F has 7 vertices and $\pi(F)=0.9$
(iii) F is K_{4}-free and $\pi(F)=\pi\left(K_{4}\right)$

Question 2 [25 marks].

(a) State the maximum number of edges in a triangle-free graph on n vertices, and describe the family of graphs attaining it.
(b) Suppose that n is even and $0 \leqslant r \leqslant n-1$. For which values of r does there exist an r-regular triangle-free graph on n vertices. Justify your answer.
(c) Decide whether the following statement is true or false, giving a proof or counterexample as apropriate: For any triangle-free graph G with fewer edges than the maximum you gave in part (a), it is possible to add an edge to G without creating a triangle.
(d) Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ satisfy that there are no distinct i, j, k with
$x_{i}+x_{j}+x_{k}=3$. What is the maximum number of pairs (i, j) with $1 \leqslant i<j \leqslant n$ satisfying $x_{i}+x_{j}=2$. Prove your answer.

Question 3 [25 marks]. This question is about subgraphs of the random graph $G_{n, p}$.
(a) Let X be the random variable which counts the number of copies of K_{4} in $G_{n, p}$. Determine a formula for $\mathbb{E}(X)$ and show that if $p=n^{-c}$ for some $c>2 / 3$ then $\lim _{n \rightarrow \infty} \mathbb{E}(X)=0$.
(b) Deduce that when $p=n^{-c}$ for some $c>2 / 3$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(G_{n, p} \text { is } K_{4} \text {-free }\right)=1 . \tag{5}
\end{equation*}
$$

(c) Let H be the graph below. Let Y be the random variable which counts the number of copies of H in $G_{n, p}$.

Show that if $p=n^{-c}$ for some $c>4 / 5$ then $\lim _{n \rightarrow \infty} \mathbb{E}(Y)=0$.
(d) Find a p significantly larger than $n^{-4 / 5}$ for which $\lim _{n \rightarrow \infty} \mathbb{P}\left(G_{n, p}\right.$ is H-free $)=1$.
(e) Construct a graph F satisfying both of the following:

- When $p=n^{-1 / 10}$ we have $\lim _{n \rightarrow \infty} \mathbb{P}\left(G_{n, p}\right.$ is F-free $)=1$
- When $p=n^{-9 / 10}$ we have $\lim _{n \rightarrow \infty} \mathbb{E}\left(\right.$ the number of copies of F in $\left.G_{n, p}\right) \nrightarrow 0$.

Justify why your example works.

Question 4 [25 marks].

(a) Show that the number of copies of $K_{1, t}$ (the star with t leaves) in an n-vertex graph with $e \geqslant \frac{t n}{2}$ edges is at least

$$
\frac{n}{t!}\left(\frac{2 e}{n}-t\right)^{t}
$$

(b) Suppose that $\frac{2 e}{n}$ is an integer. Which graphs on n vertices with e edges contain the fewest copies of $K_{1, t}$?
(c) Use the $t=2$ case of part (a) to give an upper bound on $\operatorname{ex}\left(n, K_{2,4}\right)$.
(d) Use the $t=4$ case of part (a) to give an upper bound on ex $\left(n, K_{2,4}\right)$.
(e) Which of parts (c) and (d) is a stronger bound for large n ?

Question 5 [25 marks].

(a) State and prove Dirac's Theorem on Hamilton cycles in graphs.
(b) Let $X=\{1,2, \ldots, n\}$. The Kneser graph $K(n, r)$ is defined by

$$
V(K(n, r))=\{A \subseteq X:|A|=r\}
$$

with A, B adjacent if $A \cap B=\emptyset$.
(i) Show that $K(n, 2)$ is Hamiltonian for all $n \geqslant 8$.
(ii) Find a necessary and sufficient condition on n and r for $K(n, r)$ to be triangle-free.
(c) For each of the following conditions either give an example of a graph satisfying it or prove that no such graph can exist:
(i) G is a bipartite graph on an odd number of vertices with a Hamilton cycle.
(ii) G is a regular graph on an even number $n \geqslant 4$ of vertices and both G and its complement \bar{G} are non-Hamiltonian.
(iii) G is a 4-regular Hamiltonian graph on 100 vertices with the property that deleting any vertex (and its incident edges) from it gives a Hamiltonian graph.

End of Paper.

[^0]
[^0]: © Queen Mary University of London (2023)

