

Main Examination period 2023 – January – Semester A

MTH742P: Advanced Combinatorics (resit paper) Duration: 3 hours

The exam is intended to be completed within **3 hours**. However, you will have a period of **4 hours** to complete the exam and submit your solutions.

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best FOUR questions answered will be counted.

All work should be **handwritten** and should **include your student number**. Only one attempt is allowed – **once you have submitted your work, it is final**.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a **single PDF file**, and submit this file using the tool below the link to the exam;
- e-mail a copy to **maths@qmul.ac.uk** with your student number and the module code in the subject line;

Examiners: Robert Johnson and John Bray

In this paper graphs do not have loops or multiple edges.

Question 1 [25 marks].

- (a) Define the **Turán density** $\pi(F)$ of a finite graph F.
- (b) State (without proof) a useful formula relating $\pi(F)$ to another graph parameter of F, defining any terms you use. [3]
- (c) For $t \ge 2$, let A_t be the graph on t^2 vertices defined by
 - $V(A_t) = \{(x, y) : x, y \in \{1, 2, \dots, t\}\}$
 - Distinct vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if $x_1 = x_2$ or $y_1 = y_2$.

Use part (b) to determine $\pi(A_t)$ for all $t \ge 2$.

- (d) For $t \ge 2$, let B_t be the graph on t^2 vertices defined by
 - $V(B_t) = \{(x, y) : x, y \in \{1, 2, \dots, t\}\}$
 - (x_1, y_1) and (x_2, y_2) adjacent if and only if either (i) $x_1 = x_2$ and $|y_1 y_2| = 1$ or (ii) $y_1 = y_2$ and $|x_1 x_2| = 1$.

Use part (b) to determine $\pi(B_t)$ for all $t \ge 2$.

(e) For each of the following conditions either give an example of a finite graph F satisfying it or explain why no such graph exists: [9]

(i)
$$\pi(F) = \frac{\sqrt{2}}{2}$$

(ii) F has 7 vertices and
$$\pi(F) = 0.9$$

(iii) F is K_4 -free and $\pi(F) = \pi(K_4)$

Question 2 [25 marks].

- (a) State the maximum number of edges in a triangle-free graph on n vertices, and describe the family of graphs attaining it.
- (b) Suppose that n is even and $0 \le r \le n-1$. For which values of r does there exist an r-regular triangle-free graph on n vertices. Justify your answer. [7]
- (c) Decide whether the following statement is true or false, giving a proof or counterexample as appropriate: For any triangle-free graph G with fewer edges than the maximum you gave in part (a), it is possible to add an edge to G without creating a triangle.
- (d) Let $x_1, x_2, \ldots, x_n \in \mathbb{R}$ satisfy that there are no distinct i, j, k with $x_i + x_j + x_k = 3$. What is the maximum number of pairs (i, j) with $1 \leq i < j \leq n$ satisfying $x_i + x_j = 2$. Prove your answer. [7]

[5]

[5]

5

[6]

Question 3 [25 marks]. This question is about subgraphs of the random graph $G_{n,p}$.

- (a) Let X be the random variable which counts the number of copies of K_4 in $G_{n,p}$. Determine a formula for $\mathbb{E}(X)$ and show that if $p = n^{-c}$ for some c > 2/3 then $\lim_{n\to\infty} \mathbb{E}(X) = 0.$
- (b) Deduce that when $p = n^{-c}$ for some c > 2/3 we have

$$\lim_{n \to \infty} \mathbb{P}(G_{n,p} \text{ is } K_4\text{-free}) = 1.$$
[5]

(c) Let H be the graph below. Let Y be the random variable which counts the number of copies of H in $G_{n,p}$.

Show that if $p = n^{-c}$ for some c > 4/5 then $\lim_{n \to \infty} \mathbb{E}(Y) = 0.$ [5]

- (d) Find a *p* significantly larger than $n^{-4/5}$ for which $\lim_{n\to\infty} \mathbb{P}(G_{n,p} \text{ is } H\text{-free}) = 1.$ [5]
- (e) Construct a graph F satisfying both of the following:
 - When $p = n^{-1/10}$ we have $\lim_{n\to\infty} \mathbb{P}(G_{n,p} \text{ is } F\text{-free}) = 1$
 - When $p = n^{-9/10}$ we have $\lim_{n\to\infty} \mathbb{E}(\text{the number of copies of } F \text{ in } G_{n,p}) \neq 0.$

Justify why your example works.

Question 4 [25 marks].

(a) Show that the number of copies of $K_{1,t}$ (the star with t leaves) in an n-vertex graph with $e \ge \frac{tn}{2}$ edges is at least

$$\frac{n}{t!} \left(\frac{2e}{n} - t\right)^t$$

[7]

[5]

[3]

[5]

- (b) Suppose that $\frac{2e}{n}$ is an integer. Which graphs on *n* vertices with *e* edges contain the fewest copies of $K_{1,t}$?
- (c) Use the t = 2 case of part (a) to give an upper bound on $ex(n, K_{2,4})$. [5]
- (d) Use the t = 4 case of part (a) to give an upper bound on $ex(n, K_{2,4})$. [5]
- (e) Which of parts (c) and (d) is a stronger bound for large n?

© Queen Mary University of London (2023) Continue to next page

[5]

Question 5 [25 marks].

- (a) State and prove Dirac's Theorem on Hamilton cycles in graphs.
- (b) Let $X = \{1, 2, ..., n\}$. The **Kneser graph** K(n, r) is defined by

$$V(K(n,r)) = \{A \subseteq X : |A| = r\}$$

with A, B adjacent if $A \cap B = \emptyset$.

- (i) Show that K(n, 2) is Hamiltonian for all $n \ge 8$.
- (ii) Find a necessary and sufficient condition on n and r for K(n,r) to be triangle-free.
- (c) For each of the following conditions either give an example of a graph satisfying it or prove that no such graph can exist: [9]
 - (i) G is a bipartite graph on an odd number of vertices with a Hamilton cycle.
 - (ii) G is a regular graph on an even number $n \ge 4$ of vertices and both G and its complement \overline{G} are non-Hamiltonian.
 - (iii) G is a 4-regular Hamiltonian graph on 100 vertices with the property that deleting any vertex (and its incident edges) from it gives a Hamiltonian graph.

End of Paper.

 $[\mathbf{5}]$

[6]

 $[\mathbf{5}]$

© Queen Mary University of London (2023)