
Main Examination period 2018

MTH742P/U: Advanced Combinatorics
Duration: 3 hours

Apart from this page, you are not permitted to read the contents of this question paper
until instructed to do so by an invigilator.

You may attempt as many questions as you wish and all questions carry equal marks.
Except for the award of a bare pass, only the best FOUR questions answered will be
counted.

Calculators are not permitted in this examination. The unauthorised use of a calculator
constitutes an examination offence.

Complete all rough work in the answer book and cross through any work that is not to be
assessed.

Possession of unauthorised material at any time when under examination conditions is an as-
sessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have
any notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If
you do, raise your hand and give them to an invigilator immediately.

It is also an offence to have any writing of any kind on your person, including on your body.
If you are found to have hidden unauthorised material elsewhere, including toilets and cloak-
rooms, it shall be treated as being found in your possession. Unauthorised material found on
your mobile phone or other electronic device will be considered the same as being in posses-
sion of paper notes. A mobile phone that causes a disruption in the exam is also an assessment
offence.

Exam papers must not be removed from the examination room.

Examiners: J. N. Bray and M. Jerrum

c© Queen Mary University of London (2018) Turn Over



Page 2 MTH742P/U (2018)

In any question, you may use earlier results in later parts. For example, you may use part (c)
in part (f), but not part (d) in part (c).

Standard notation is used for graphs, namely: Cn (cycle), En (empty), Kn (complete), Kr,s
(complete bipartite), Pk (path with k edges).
We use P for probability and E for expectation. Recall also that 0 ∈ N.

Question 1. [25 marks] In this question n,r,s,k are non-negative integers such that r > 1,
n = kr+ s and 0 6 s < r.

(a) Define what it means for a graph to be r-partite. And what does it mean for an r-partite
graph to be complete r-partite? [4]

(b) Define the Turán graphs Tr(n). [2]

(c) Give alternative notations for the graphs T1(n), T2(n) and Tr(n) for r > n, using the
symbols E and K. [3]

(d) Let tr(n) = e(Tr(n)) be the number of edges in Tr(n). Show that

tr(n) = tr(kr+ s) = k2
(

r
2

)
+ ks(r−1)+

(
s
2

)
.

[5]

(e) Hence, or otherwise, prove for n > r that

tr(n)− tr(n− r) =
(

r
2

)
+(r−1)(n− r).

[3]

Turán’s Theorem states (among other things) that a Kr+1-free graph on n vertices has at most
tr(n) edges. In one proof of this, we fix r and induct on n, and for n > r we consider a Kr+1-free
graph Γ maximising the number of edges. Within Γ, we locate an r-clique A, and let B = Γ\A.

(f) Establish the base cases of Turán’s Theorem, namely those for which n 6 r. [2]

(g) Find equalities or upper bounds for e(A), e(B) and e(A,B) and thus get an upper bound
for e(Γ). [6]
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Question 2. [25 marks]

(a) Let Γ = (V,E) be a simple graph, and let f : V → R be a function. Prove the following
generalisation of the Handshaking Lemma:

∑
{u,v}∈E

( f (u)+ f (v)) = ∑
v∈V

f (v)d(v),

where d(v) denotes the degree of the vertex v. [5]

(b) Deduce the following:

2|E|= ∑
v∈V

d(v) and ∑
{u,v}∈E

(d(u)+d(v)) = ∑
v∈V

d(v)2.
[3]

(c) State Mantel’s Theorem on the maximum number of edges in a triangle-free graph on n
vertices. State the isomorphism type(s) of all graphs meeting the bound. [5]

(d) For each integer n > 3, prove that the number of edges in an n vertex graph with exactly
one triangle is at most ⌊

(n−1)2

4

⌋
+2.

[Hint: Let Γ be an n vertex graph with exactly one triangle, let T = {u,v,w} be the
triangle in Γ, and let ∆ = Γ\T . Use this notation to help you construct a proof.] [9]

(e) For each integer n > 3 construct a graph with exactly one triangle meeting the bound of
the previous part. No proofs are required. [3]

Question 3. [25 marks]

(a) Define the notion of a projective plane. [Use the definition I gave in lectures.] [4]

(b) Define what it means for a projective plane to have order d. [2]

(c) For each prime power q > 1 give a construction of a projective plane of order q. Prove
that what you make is indeed a projective plane with the required properties. [8]

(d) Starting from an arbitrary projective plane of order d, construct a C4-free graph (from
which one can recover the original projective plane), and show the graph is indeed C4-
free. Determine, with justification, the number of vertices and edges of that graph. [7]

(e) Let the graph constructed in the previous part have n vertices. Determine its number m
of edges in terms of n, and state what happens asymptotically. [4]
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Question 4. [25 marks]

(a) Define what is meant by a Hamiltonian cycle in a finite graph. [You need not define a
cycle.] [2]

(b) State Dirac’s Theorem on Hamiltonian cycles in graphs. [3]

(c) For each integer n > 3, give an example of a graph with n vertices and
(n

2

)
−n+2 edges,

which contains no Hamiltonian cycle. Justify your answer. [3]

(d) For each integer n > 3, give an example of a bipartite graph with n vertices and at least
1
4n2−1 edges, which contains no Hamiltonian cycle. Justify your answer. [4]

(e) Let Pk denote the path with k edges. Let k,n ∈N+ be such that n is a multiple of k. Give
an example of a graph Γ with n vertices and 1

2(k−1)n edges, which is Pk-free. [3]

(f) State a theorem on the maximum possible number of edges of a Pk-free graph with n
vertices, which is best possible whenever n is a multiple of k. [3]

(g) Prove this theorem (by induction on n, or otherwise). You may assume that if k,n ∈ N+

with k < n, and if Γ is a connected graph with n > 3 vertices and with minimum degree
δ (Γ)> k/2, then Γ contains a path with k edges. [7]

Question 5. [25 marks]

(a) Let n > k > 0 be integers. Recall that a tournament has property Sk if for any subset of k
vertices there is some vertex that defeats them all. Fix V = {1, . . . ,n}, and consider the
set of all 2(

n
2) tournaments on V , with each being equally likely.

Prove that if
(n

k

)
(1−2−k)n−k < 1 then there is a tournament on V with property Sk. [Hint:

For suitable K ⊆ V consider the probability of the event AK that no vertex beats every
member of K.] [10]

Let Γ= (V,E) be a graph with n vertices and m edges. For each v∈V choose it with probability
1
2 , independently of the other vertices, let L be the set of chosen vertices, and let R =V \L. For
e = {u,v} ∈ E let Xe = X{u,v} be the indicator random variable that one endpoint of e lies in L
and the other in R.

(b) For e ∈ E calculate P(Xe = 1) and EXe. [8]

(c) Prove that Γ contains a bipartite subgraph with at least m
2 edges. [Hint: Consider a

suitable random variable.] [7]

End of Paper.
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