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In any question, you may use earlier results in later parts. For example, you may
use part (c) in part (f), but not part (d) in part (c).

You may assume the Cauchy-Schwarz inequality in any question.

Question 1.

(a) State Mantel’s theorem, namely the upper bound on the number of edges in
any triangle-free graphs on n vertices. [4]

(b) Give a graph on n vertices which achieves the upper bound in Mantel’s
theorem. [3]

(c) Prove the upper bound in Mantel’s theorem. [9]

(d) Prove that if a graph is bipartite, then it does not contain any odd cycle. [4]

(e) What is the maximum number of edges in a graph on n vertices without any
cycle of odd length? Show that your upper bound can be achieved. [5]

Question 2.

(a) Let H be a finite graph with at least one edge. Define the Turán number
ex(n,H) of the graph H. [3]

(b) Show that the following limit exists

lim
n→∞

ex(n,H)(n
2
) . [6]

(c) Define the Turán density π(H) of a finite graph H. [3]

(d) Define the Chromatic number χ(H) of a finite graph H. [3]

(e) State a formula relating π(H) and χ(H). [3]

(f) Calculate π(Kr) for every r ⩾ 2. (Kr is the complete graph on r vertices.) [3]

(g) Calculate π(H) where H is the following graph:

[4]
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Question 3.

(a) Let G = (V,E) be a simple graph. Prove the handshaking lemma, namely that∑
v∈V

d(v) = 2 |E| ,

where d(v) is the degree of a vertex v. [3]

(b) Let N(G) be the number of paths of length 2 in G. Show that

N(G) =
∑
v∈V

(
d(v)

2

)
. [4]

(c) Let G be a bipartite graph with n vertices on each side. Let C4 be the cycle
of length 4. Show that if G is C4-free, then N(G) ⩽ 2

(n
2
)
. [5]

(d) With the same assumption as part (c), show that

|E| ⩽ n

2

(√
4n−3+1

)
. [8]

(e) With the same assumption as part (c), show that if |E| ⩾ 2n, then

N(G) ⩾ 2n. [5]

Question 4.

(a) Define an independent set of a graph G. [3]

(b) Let G be a graph with n vertices. Let α(G) be the maximum size of an
independent set in G.
Show that if the maximum degree of G is d ⩾ 3, then α(G) ⩾ n

d+1 . [5]

(c) Using the alteration method, prove that if the average degree of G is d ⩾ 3,
then α(G) ⩾ n

2d . [8]

(d) Let G = (V,E) and d(v) be the degree of v. Prove that

α(G) ⩾
∑
v∈V

1
d(v)+1

. [9]
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Question 5.

(a) Let A1, A2, …, An be events in a probability space. Define what it means for
D to be a dependency graph for these events. [3]

(b) State the (symmetric version) Lovász Local Lemma. [3]

(c) Let H be a k-uniform hypergraph with maximum degree d ⩾ 2. Use the local
lemma to show that, if edk ⩽ 2k−1, then H is 2-colourable. [7]

(d) An orientation σ of G assigns a direction to every edge in G. A vertex is a
sink if all adjacent edges point toward it.

Use the local lemma to show that if G is a d-regular graph where d ⩾ 4,
then G contains an orientation without any sink. [7]

(e) Let G be a connected simple graph with at least one edge. Show that G has
an orientation without any sink if and only if G is not a tree. [5]

End of Paper.
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