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Question 1. (a) Define what is meant by a Hamiltonian cycle in a finite graph.
(You need not define a cycle.) [2]

(b) State Dirac’s theorem on Hamiltonian cycles in graphs. [3]

(c) For each integer n ≥ 3, give an example of a graph with n vertices and(
n
2

)
− n+ 2 edges, which contains no Hamiltonian cycle. Justify your answer. [3]

(d) For each integer n ≥ 3, give an example of a bipartite graph with n vertices
and at least 1

4n
2 − 1 edges, which contains no Hamiltonian cycle. Justify your

answer. [5]

(e) Let Pk denote the path with k edges. Let k, n ∈ N be such that n is a
multiple of k. Give an example of a graph G with n vertices and 1

2(k − 1)n
edges, which is Pk-free. [3]

(f) State a theorem on the maximum possible number of edges of a Pk-free graph
with n vertices, which is best-possible whenever n is a multiple of k. [3]

(g) Prove this theorem (by induction on n, or otherwise). You may assume that
if k, n ∈ N with k < n, and if H is a connected graph with n vertices and
with minimum degree δ(H) ≥ k/2, then H contains a path with k edges. [6]

Question 2. (a) State Mantel’s theorem on the maximum possible number of
edges of a triangle-free graph with n vertices. For each n ∈ N, describe the
graphs for which equality holds in Mantel’s theorem. [5]

(b) Let G be a finite graph, and let x ∈ V (G). Define the degree d(x) of x. [1]

For the rest of this question, let F denote the graph below.

(c) Let n ∈ N with n ≥ 2. Let G be a graph with n vertices. Show that if G is
triangle-free, then G has a vertex of degree at most bn/2c. [3]

(d) Now suppose G is an F -free graph with n vertices which contains a triangle.
Show that if xyz is a triangle in G, then d(x) + d(y) + d(z) ≤ n+ 3. Deduce
that if n ≥ 5, then G has a vertex of degree at most bn/2c. [5]

(e) Using part (c), part (d) and induction on n (or otherwise), prove that for each
integer n ≥ 4, any F -free graph with n vertices has at most bn2/4c edges. [6]

(f) For each integer n with n = 4 or n ≥ 10, describe (with justification) the
graphs with n vertices for which equality holds in part (e), that is, the F -free
graphs with n vertices and exactly bn2/4c edges. (You may assume the
results in part (a).) [5]
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Question 3. (a) Let G be a finite graph. Define the chromatic number χ(G). [1]

(b) Describe the greedy colouring algorithm for colouring the vertices of a finite
graph. [2]

(c) Let G be a finite graph with maximum degree ∆. Show that, when applied to
any ordering of the vertices of G, the greedy colouring algorithm produces a
proper colouring of the vertices of G using at most ∆ + 1 colours. [3]

(d) Let G be a finite graph. By applying the greedy colouring algorithm to an
appropriate ordering of the vertices of G, or otherwise, show that

χ(G) ≤ max{δ(H) : H is a subgraph of G}+ 1,

where δ(H) denotes the minimum degree of H. [5]

(e) Using the result in part (d), or otherwise, prove that for any connected, finite
graph which is not regular, we have χ(G) ≤ ∆(G), where ∆(G) denotes the
maximum degree of G. [4]

(f) Let G be a finite, connected graph which is not a clique. Define the
connectivity κ(G) of G. (You do not need to define the term connected, but if
you use the term k-connected, you should define it.) [3]

(g) Using the result in part (e), or otherwise, prove that a finite graph G with
κ(G) = 1 has χ(G) ≤ ∆(G). [5]

(h) Write down two non-isomorphic, connected graphs G with 5 vertices and with
χ(G) = ∆(G) + 1. [2]
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Question 4. Throughout this question, let H be a finite graph with at least one
edge.

(a) Define the Turán number ex(n,H) (for each n ∈ N), and define the Turán
density π(H). [4]

(b) State Turán’s theorem on the maximum possible number of edges of a
Kr+1-free graph with n vertices. For each r, n ∈ N with n ≥ r ≥ 2, describe
the graphs for which equality holds in Turán’s theorem. [6]

(c) Let χ(H) denote the chromatic number of the graph H. State a formula for
π(H) in terms of χ(H). [2]

(d) Using part (c), or otherwise, calculate the Turán density of the graph below.
Justify your answer. [4]

(e) Show that for each integer r ≥ 2, there exists a finite graph Ar such that
χ(Ar) = r + 1 but ex(n,Ar) > ex(n,Kr+1) for all integers n > r. (You may
assume any result in parts (a)-(d).) [4]

(f) Show that for each integer r ≥ 2, there exists a finite graph Br which is
Kr+1-free but has π(Br) = 1− 1/r. (You may assume any result in parts
(a)-(d).) [5]
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Question 5. (a) Define what is meant by the Erdős-Rényi random graph Gn,p. [4]

(b) Show that the number of copies of C4 in K{1,2,...,n} is

1
8n(n− 1)(n− 2)(n− 3).

[4]

(c) Let X denote the number of copies of C4 in Gn,p. Write down a formula for
E[X] in terms of n and p. [2]

For the rest of this question, fix p = n−2/3.

(d) Show that
Prob{X ≥ 1

4n
1/3(n− 1)} ≤ 1

2 .

You may assume Markov’s inequality, which says that for any non-negative
random variable R with finite mean, and any a > 0, we have

Prob{R ≥ a} ≤ E[R]

a
.

[3]

(e) Let Y denote the number of edges of Gn,p. Show that

E[Y ] = 1
2n

1/3(n− 1).

(You may assume the standard formula for the mean of a binomial random
variable Bin(N, p).) [2]

(f) Recall that for any binomial random variable Z with mean µ, and any δ > 0,
we have

Prob{Z ≤ (1− δ)E[Z]} ≤ e−δ2µ/2.

Use this fact to show that

Prob{Y ≤ 3
8n

1/3(n− 1)} < 1
2

provided n is sufficiently large. [3]

(g) Explain how to deduce from parts (d) and (f) that there exists a graph with
n vertices, at least 3

8n
1/3(n− 1) edges, and at most 1

4n
1/3(n− 1) copies of C4,

provided n is sufficiently large. [4]

(h) Suggest how to modify this graph to produce a C4-free graph with n vertices
and at least 1

8n
1/3(n− 1) edges, for all sufficiently large n. [3]

End of Paper.
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