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Question 1. (a) State Mantel’s theorem on the maximum number of edges in a
triangle-free graph. [3]

(b) For each positive integer n, describe the n-vertex triangle-free graphs with the
maximum possible number of edges. [3]

(c) Write down all the different unlabelled triangle-free graphs with 4 vertices. [4]

(d) Give a proof of the upper bound in Mantel’s theorem. [8]

(e) Let F be the 4-edge graph pictured below. For each integer n ≥ 2, deter-
mine the F -free, n-vertex graphs with the maximum possible number of edges.
Justify your answer. (You can assume any of the results in parts (a)-(d).)

[7]

Question 2. (a) Let F be a finite graph with at least one edge. Define the Turán
number ex(n, F ) of the graph F . [3]

(b) Show that the sequence of real numbers(
ex(n, F )(

n
2

) )
n≥2

is non-increasing. [5]

(c) Define the Turán density π(F ) of the graph F , as a limit, and say briefly why
this limit exists. [4]

(d) Write down a formula for π(Ks), valid for each integer s ≥ 2. [2]

(e) Define the chromatic number χ(F ) of the graph F . [3]

(f) State a formula for π(F ) in terms of χ(F ). [3]

(g) Calculate π(H), where H is the following graph.

[5]
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Question 3. (a) Let G be a finite graph. Prove that G is bipartite if and only if
G contains no odd cycle. [8]

(b) Show that if G is a finite graph with maximum degree ∆, then the ‘greedy
colouring algorithm’ produces a proper colouring of the vertices of G with at
most ∆ + 1 colours. [6]

(c) Deduce that a graph with n vertices and maximum degree ∆ has an indepen-
dent set of size at least

n

∆ + 1
.

[4]

(d) For each positive integer ∆, give an example of a finite graph G with maximum
degree ∆ and with χ(G) = ∆ + 1. [3]

(e) State Brooks’ theorem on the chromatic number of a graph. [4]

Question 4. (a) Let G be a graph with n vertices. Explain why∑
v∈V (G)

d(v) = 2e(G).

[3]

(b) Let N denote the number of paths of length 2 in G. Explain why

N =
∑

v∈V (G)

(
d(v)

2

)
.

[4]

(c) Suppose G contains no cycle of length 4. Explain why N ≤
(
n
2

)
. [4]

(d) Use parts (a), (b) and (c) to show that if G contains no cycle of length 4, then

e(G) ≤ n
4 (
√

4n− 3 + 1).

(You may assume the Cauchy-Schwarz inequality.) [9]

(e) Show that if e(G) ≥ 1
2

(
n
2

)
, then

N ≥ n(n− 1)(n− 3)

8
.

[5]
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Question 5. Recall that a tree is defined to be a connected, acyclic graph.

(a) Let T be a tree, and let v be a vertex of T . Define what it means for v to be
a leaf of T . [2]

For the rest of this question, let T be a tree with n vertices, where n is an integer
greater than 1.

(b) Prove that T has at least two leaves. [7]

(c) Prove that e(T ) = n− 1. [8]

(d) Write down the value of χ(T ). [4]

(e) Calculate the number of (labelled) trees with vertex-set {1, 2, 3, 4}. [4]

Question 6. (a) LetGn,p denote the Erdős-Renyi random graph. LetX = e(Gn,p).
Give a formula for E[X]. [3]

(b) Let Y denote the number of copies of K3,3 in Gn,p. Show that

E[Y ] =
1

2

(
n

3

)(
n− 3

3

)
p9.

(You may assume any result in the course.) [5]

(c) Now let p = n−2/3. Using part (b), show that E[Y ] < 1
72 . Use Markov’s

inequality to deduce an upper bound on Prob{Y ≥ 1}. [3]

(d) Recall that if Z is a binomial random variable with Z ∼ Bin(N, p), and 0 ≤
δ ≤ 1, then

Prob{Z ≤ (1− δ)pN} < e−δ
2pN/2.

Use this to show that

Prob

{
X ≤ 1

2

(
n

2

)
n−2/3

}
< 1

2 ,

provided n is sufficiently large. (Here, you are free to take n to be as large as
you want — for example, you can take n ≥ 100.) [4]

(e) Using parts (c) and (d), show that ex(n,K3,3) ≥ 1
8n

4/3, provided n is suffi-
ciently large. (Here, as before, you are free to take n to be as large as you want
— for example, you can take n ≥ 100.) [7]

(f) Write down a positive constant α such that for all n ∈ N,

ex(n,K3,3) ≤ cn2−α,

for some positive constant c. (You do not need to give the value of c.) [3]

End of Paper.
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