

Main Examination period 2023 – January – Semester A

MTH712P / MTH734U: Topics in Probability and Stochastic Processes

Duration: 3 hours

The exam is intended to be completed within **3 hours**. However, you will have a period of **4 hours** to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be **handwritten** and should **include your student number**. Only one attempt is allowed – **once you have submitted your work, it is final**.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a **single PDF file**, and submit this file using the tool below the link to the exam;
- e-mail a copy to **maths@qmul.ac.uk** with your student number and the module code in the subject line;

Examiners: A. Gnedin, I. Goldsheid

Question 1 [25 marks]. Let $(N_1(t), t \ge 0)$ and $(N_2(t), t \ge 0)$ be two independent Poisson processes with intensities λ_1 and λ_2 , respectively.

- (a) Calculate the covariance $\operatorname{Cov}\left(N_1(t) + N_2(t), N_1(t) N_2(t)\right).$ [5]
- (b) Given that $N_1(2) = 9$ and $N_2(2) = 6$, find the probability that the N_1 -process reaches level 10 before the N_2 -process does. [5]
- (c) For given n_1 and n_2 , what is the probability that there exists time t such that $N_1(t) = n_1$ and $N_2(t) = n_2$? [5]
- (d) Consider the Markov chain $D(t) = N_1(t) N_2(t), t \ge 0.$
 - (i) Find the transition rates of this Markov chain. [5]
 - (ii) For given positive integers a and b determine the probability that the Markov chain reaches state b before state -a. [5]

Question 2 [25 marks]. Attacks on a data network occur according to a Poisson process with rate λ . Every attack is eventually detected. The time between occurrence of an attack and its detection has exponential distribution with parameter μ , and these times for different attacks are independent.

Consider the Markov chain $(X(t), t \ge 0)$, where X(t) is the number of undetected attacks at time t, and suppose that X(0) = 0.

(a) Determine
$$\mathbb{E}X(t)$$
.

- (b) Determine the transition rates of this Markov chain, and write down the first three rows of the generator matrix.
- (c) Show that the distribution

$$\pi_k = e^{-\rho} \frac{\rho^k}{k!}, \quad k = 0, 1, \dots,$$

with $\rho := \lambda/\mu$ is a stationary distribution of this Markov chain. [7]

(d) For t large, what is the approximate probability that there are three undetected attacks at time t? Explain your answer. [6]

Page 2

[6]

[6]

Question 3 [25 marks]. The lifespan of a smartphone until it breaks down is a random variable which has exponential distribution with parameter λ . A smartphone is replaced with a new one as soon as it breaks down or its service age reaches value s, whichever happens earlier. Assume that a smartphone is new at time 0, and that the lifespans (until breaking down) of different smartphones are independent. Let W be the time of the first replacement which occurs because of the service age of a smartphone.

- (a) What is the distribution of the number of smartphones that get replaced by time W? (Do not count 0 but count W as a replacement time.) Justify your answer. [6]
- (b) Determine the cumulative distribution function of the time between two successive replacements.
- (c) Find $\mathbb{E}W$.
- (d) Find the long run replacement rate.

Question 4 [25 marks]. In this question $(B(t), t \ge 0)$ is a standard Brownian motion.

- (a) Compute $\mathbb{E}[B^2(3) B^2(1)].$ [5]
- (b) Determine $\mathbb{P}(B(s) > B(t))$ for $s > 0, t > 0, s \neq t$. [5]
- (c) Show that $\mathbb{P}(B(1) > 0, B(2) > 0) > 1/4.$ [5]
- (d) Is the process W(t) = -3B(9t) a standard Brownian motion? Explain your answer.
- (e) For the process $X(t) = e^{-t}B(e^{2t})$ calculate the covariance function

$$c(s,t) = \operatorname{Cov}(X(s), X(t))$$

for $s \ge 0, t \ge 0$.

 $[\mathbf{5}]$

[5]

[6]

[7]

[6]

End of Paper.

© Queen Mary University of London (2023)