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Question 1. [20 marks] Let X1, X2, . . . be independent identically distributed
random variables with P(Xj = 1) = p, P(Xj = −1) = 1 − p = q for some 0 < p < 1.
Consider a simple random walk (Sn, n ≥ 0), with S0 = 0 and Sn = ∑n

j=1 Xj for n ≥ 1.
A standard result on random walks, which you can use without proof, is given in the
Appendix.

(a) For each given p such that 0 < p < 1, what is the probability that the random
walk ever reaches state 2? Explain your answer. [6]

(b) For p = 1/2, what is the probability that the random walk eventually reaches
both the state 2 and the state −2, with the first visit to the state −2 occurring
before the first visit to the state 2? Explain your answer. [3]

(c) Let τ = min{n ≥ 0 : Sn = 2} be the time of the first visit to state 2.

(i) Explain what it means for this random variable τ to be a stopping time
adapted to X1, X2, . . . [2]

(ii) Assuming that p > 1/2, find Eτ. [4]

(d) Suppose p = 1/3. Show that as n → ∞, with probability one

Sn − 3Sn+1

2n
→ 1

3
.

You may use any standard result from the course, without proof. [5]
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Question 2. [20 marks]

(a) Let (N(t), t ≥ 0) be a Poisson process with rate λ. State without proof which of
the following is true for positive h as h → 0:

(i) P(N(h) = 0) = o(h), [1]

(ii) P(N(h) = 1) = λh + o(h), [1]

(iii) P(N(h) = 2) = o(h), [1]

(iv) E[N(h)] = λh + o(h). [2]

(b) A counter registers two types of particles, A and B, that arrive according to
Poisson processes with rates 2 and 3 particles per second, respectively. The
Poisson processes for particles A and B are independent of one another. In the
following questions (i)-(v), state any properties of the Poisson process, that you
use.

(i) What is the distribution of the total number of particles (of any type) that
arrive in the first two seconds? [3]

(ii) Given that exactly one particle arrived before time t, what is the
distribution of the arrival time of this particle? [3]

(iii) Given that five particles arrived before time t, what is the distribution of
the number of type A particles among them? [3]

(iv) Given that three particles of type A and one particle of type B arrived
before time t, find the expected further waiting time (after time t) for the
next particle of type A to arrive? [3]

(v) What is the probability that two particles of type A arrive within the time
interval [0, 1] and three particles of type B arrive within the time interval
[4, 5] (with time measured in seconds)? [3]
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Question 3. [20 marks] A processor executes without interruption an unending
sequence of tasks, one task at a time. The durations of tasks are independent, with
the same probability density function

f (x) =

�
3x−4, for x ≥ 1,
0, for x < 1.

The cost incurred by a task of duration x ≥ 0 is given by the formula y = 30
√

x + 10.
Assuming that the first task starts at time zero, let N(t) and Y(t) be the number and
the cumulative cost of tasks completed by time t ≥ 0, respectively.

(a) Let Sn be the time at which the nth task is completed. Show that for all t ≥ 0
and integers n ≥ 1

P(N(t) = n) = P(Sn ≤ t < Sn+1).

[4]

(b) Find the long run task completion rate

lim
t→∞

N(t)
t

.

[5]

(c) State a Central Limit Theorem for the number of completed tasks N(t).
Evaluate all parameters involved. [6]

(d) Find the long run mean cost per unit time

lim
t→∞

EY(t)
t

.

[5]
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Question 4. [20 marks] A network operates with two servers A and B. Each server
switches at random times between online and offline modes. The length of every
online period is exponentially distributed with mean 20 minutes, and the length of
every offline period is exponentially distributed with mean 12 minutes. The lengths
of periods are all independent. Let X(t) be the number of servers in the online mode
at time t ≥ 0.

(a) Write down the generator matrix G of the continuous-time Markov chain
(X(t), t ≥ 0). [7]

(b) Is the Markov chain (X(t), t ≥ 0) irreducible? Justify your answer briefly. [3]

(c) Determine the stationary distribution of the Markov chain (X(t), t ≥ 0). [7]

(d) For large t, what is the approximate probability that the server A is in the online
mode at time t? [3]

Question 5. [20 marks] Let (B(t), t ≥ 0) be a (standard) Brownian motion.

(a) For 0 ≤ s < t, determine the distribution of 2B(s) + B(t). [5]

(b) For 0 ≤ s < t, what is the conditional distribution of B(t) given B(s) = x? [5]

(c) Is the process

X(t) =
1
3

B(9t), t ≥ 0,

a Brownian motion? Explain your answer. [5]

(d) Let M(t) = maxs∈[0,t] B(s) be the maximum of the Brownian motion on the time
interval [0, t]. State without proof which of the following is true for fixed x > 0
and t > 0:

(i) P(M(t) > x) = P(B(t) > x), [1]

(ii) P(M(t) > x) = 2P(B(t) > x), [1]

(iii) P(|B(t)| > x) = 2P(B(t) > x), [1]

(iv) P(M(t) > x, B(t) < x) = P(B(t) > x). [2]

End of Paper – An appendix of 1 page follows.
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Appendix: The Gambler’s Ruin Problem
For integers a > 0, b ≥ 0 the probability that a simple (p, q)-random walk starting at
0 and with probability p of moving to the right visits −a before (if ever) reaching b is





1−
�

p
q

�b

1−
�

p
q

�a+b , for p �= q,

b
a+b , for p = q = 1/2.

The probability that the random walk visits b before (if ever) reaching −a is one
minus the expression above.

End of Appendix.
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