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Question 1.

(a) Consider the following quantile-quantile plot. Explain how this plot helps us
to assess whether a sample comes from a particular distribution. [5]

● ● ●
● ● ● ●●●●●●●●

●●
●●●●

●●
●●●

●●●●
●●●

●●●
●●

●●●
●●

●
●
●●

●
●

●
●

●●

●

● ●
●

●
●

●

●

−2 −1 0 1 2

0
2

4
6

8
10

12
14

Quantiles of N(0,1) distribution

E
m

pi
ric

al
 q

ua
nt

ile
s

(b) Consider the following distributions:

(i) The normal distribution with mean µ = 1 and variance σ2 = 2.5.

(ii) The chi-squared distribution with 4 degrees of freedom.

(iii) Student’s-t distribution with 4 degrees of freedom.

For a sample of size 60, which of these distributions would you expect to give
a quantile-quantile plot similar to that shown above? Justify your answer. [5]

Question 2. We wish to test at the 10% level of significance if the computer gener-
ated sample

1.85, 2.03, 1.00, 7.40, 1.45

of size n = 5 comes from an exponential distribution with parameter λ = 0.5, using
the Kolmogorov-Smirnov one sample test.

(a) Carry out this test, stating clearly your hypothesis and conclusions. [12]

(b) Why might it be preferable to carry out this test at the 10% level of signifi-
cance rather than using, for example, the 1% level of significance? [3]

(c) If Y is uniformly distributed on the interval (0,1), show that the distribution
of X = −2 log(1− Y ) is exponentially distributed with parameter λ = 0.5. [5]
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Question 3. Consider the following data:

1.4, 2.7, 2.8, 3.2, 5.9, 6.8.

(a) Find the histogram estimator f̂H and sketch its graph. Assume that the inter-
vals are of equal width 1 with integer endpoints. [8]

(b) Comment on the bias and variance of the histogram estimator. How does this
vary with the interval width? [3]

(c) Rosenblatt’s estimator is given by

f̂n,h(y) =
#{i : yi − h < y < yi + h}

2nh

For the same data, compute Rosenblatt’s estimator for a bandwidth of h = 1
and sketch its graph. [9]

(d) Comment on how changing the bandwidth would affect the graph. [3]

(e) Define the rectangular kernel, and prove that it is a kernel estimator for any
given sample y1, . . . , yn. [7]

Question 4. For n = 4 psychology students, the level of aptitude for a particular
task was measured before and after lunch. A continuous variable was measured. The
results are shown below, where the first value in each pair was measured before, and
the second value after lunch:

(1.76, 3.68), (3.95, 3.90), (4.52, 4.56), (3.50, 4.10).

(a) Perform a permutation test for matched pairs to test at the 10% level of sig-
nificance whether there is a treatment effect. [8]

(b) Name a parametric test which could generally be used for this problem. State
why a non-parametric test might be more appropriate here. [3]

(c) Describe briefly how one would carry out a permutation test using a computer.
You do not have to write any code, but suggest the form of an algorithm that
a program would carry out. [4]
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Question 5. Let y1, . . . , yn be realizations of independent and identically distributed
random variables Y1, . . . , Yn with variance σ2. Show that when using

σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2

to estimate σ2, the jackknife estimate of bias for σ̂2 is equal to

b̂iasjack = − 1

n
s2,

where s2 = 1
n−1

∑n
i=1 (yi − ȳ)2. [10]

Question 6.

(a) The coefficient of skewness of a random variable Y with mean µ = E(Y ) and
standard deviation σ =

√
V ar(Y ) is defined by

γ =
E[(Y − µ)3]

σ3
.

For a random sample y1, . . . , yn of realizations of Y , find the plug-in estimate
of γ. [4]

(b) For a random sample y1, . . . , yn of realizations of Y , describe briefly how we
might use the plug-in estimate with a bootstrap procedure to estimate the bias
of the estimator for γ. [5]

(c) Given a data set y1, . . . , yn of n distinct values, show that the number of dis-

tinct nonparametric bootstrap samples is 2n−1Cn =

(
2n− 1
n

)
. [6]

End of Paper.
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