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Throughout this exam the term measurable will be used to mean Lebesgue mea-
surable andM will denote the collection of Lebesgue measurable subsets of R. For
all measurable sets E ∈ M we will denote m(E) to be the corresponding Lebesgue
measure of E.

Question 1. [25 marks]

(a) State the definition of a null set. [3]

(b) The Cantor set C is constructed by starting with [0, 1] and successively
removing the middle third from each remaining interval, i.e. C1 = [0, 1

3 ] ∪ [2
3 , 1],

C2 = [0, 1
9 ] ∪ [2

9 , 3
9 ] ∪ [6

9 , 7
9 ] ∪ [8

9 , 1], . . . etc. and taking

C =
∞⋂

k=1

Ck.

Show that the Cantor set C is null. [3]

(c) State the definition of outer measure m∗(A) of a set A ⊆ R. [3]

(d) Prove that a set A ⊂ R is null if and only if its outer measure satisfies
m∗(A) = 0. [5]

(e) Show that outer measure obeys countable sub-additivity, i.e.

m∗
(

∞⋃
n=1

An

)
≤

∞

∑
n=1

m∗(An).

[6]

(f) Show that for a set A ⊂ R and constants c, t, with c ≥ 0, outer measure obeys

m∗(cA + t) = cm∗(A),

where cA + t := {cx + t : x ∈ A}. [5]

Question 2. [25 marks]

(a) State the definition of a measurable set E ⊆ R. [3]

(b) Show that any null set is measurable. [4]

(c) The symmetric difference of two sets A, B ⊆ R is given by
A∆B = (A \ B) ∪ (B \ A). Show that if A ∈ M and m(A∆B) = 0 then B ∈ M
and m(A) = m(B).

You may use the monotonicity condition that for two sets A, B ∈ M such that
A ⊆ B the measure satisfies m(A) ≤ m(B). [6]

c© Queen Mary University of London (2018)



MTH716U/MTHM007 (2018) Page 3

(d) Show that if E1, E2 ⊆ R are two disjoint measurable sets then the union E1 ∪ E2
is also measurable and

m(E1 ∪ E2) = m(E1) + m(E2).

[6]

(e) State the three properties for a collection F of subsets of Ω to be a σ-field? [3]

(f) Let us define the restriction of the collection of Lebesgue measurable setsM to
a measurable set B ∈ M as

M|B := {E ∩ B : E ∈ M}.

Show thatM|B is a σ-field over B. [3]

Question 3. [20 marks]

(a) State the definition of a measurable function f : R→ R. [3]

(b) Show that if the set f−1((a, ∞)) = {x : f (x) > a} is measurable for all a ∈ R

then the sets f−1([a, ∞)), f−1((−∞, a)) and f−1((−∞, a]) are also measurable. [5]

(c) Let E ⊆ R be a measurable set and take the function

f (x) = 1E(x) :=

{
1 if x ∈ E
0 if x /∈ E.

Show that f is a measurable function. [3]

(d) Let F be a σ-field over Ω and µ : F → [0, ∞] a set function. What are the
conditions needed for µ to be a measure? [2]

(e) What additional property is needed in Part (d) for µ to be a probability
measure? [1]

(f) Let F =M|[0,1] = {E ∈ M : E ⊆ [0, 1]} be the collection of Lebesgue
measurable setsM restricted to the interval [0, 1]. Let X : [0, 1]→ R be a
random variable on the probability space ([0, 1],F , m). Find the σ-field
generated by X when

(i) X(ω) = 1[0, 1
3 )
(ω) + 1[ 2

3 ,1](ω). [3]

(ii) X(ω) = ω1Q(ω). [3]
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Question 4. [30 marks]

(a) State the definition of a simple function φ and its Lebesgue Integral
∫

E φ dm
for a measurable set E. [3]

(b) For a non-negative simple function φ : R→ R and two disjoint measurable sets
E1, E2 ⊆ R show that ∫

E1∪E2

φ dm =
∫

E1

φ dm +
∫

E2

φ dm.

[4]

(c) State the definition of the Lebesgue Integral
∫

E f dm for a non-negative
measurable function f and measurable set E. [2]

(d) State the Monotone Convergence Theorem. [4]

(e) Let f be a non-negative measurable function and define the set function
µ :M→ [0, ∞] as

µ(E) :=
∫

E
f dm.

Using the Monotone Convergence Theorem show that µ is a measure on the
measurable space (R,M). [5]

(f) Provide an example of a function f for which the measure µ in Part (e) is a
probability measure on R. [2]

(g) State the definition for a function f to be Lebesgue integrable over a
measurable set E and define the corresponding Lebesgue integral

∫
E f dm. [3]

(h) Give an example of a function f that is integrable over E = [0, 1] but not over
E = [0, 5]. [3]

(i) Show that for integrable functions f and g over E ∈ M the function f + g is
also integrable and that∫

E
( f + g) dm =

∫
E

f dm +
∫

E
g dm. (1)

You may assume the equality (1) holds when f and g are non-negative
measurable functions. [4]

End of Paper.
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