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Throughout this exam the term measurable will be used to mean Lebesgue mea-
surable and M will denote the collection of Lebesgue measurable subsets of
R. For all measurable sets E ∈M we will denote m(E) to be the correspond-
ing Lebesgue measure of E.

Question 1. [25 marks]

(a) State the definition of a null set A⊂ R. [3]

(b) The outer measure of a set A⊆ R is denoted m∗(A) and defined by

m∗(A) := inf ZA , ZA :=

{
∞

∑
n=1

l(In) : A⊆
∞⋃

n=1

In, In are intervals

}
.

Show that we obtain an equivalent definition if ‘intervals’ is replaced by
‘open intervals’ in the above definition. [6]

(c) Show that for two sets A⊆ B⊆ R we have the monotonicity condition
m∗(A)≤ m∗(B). [4]

(d) Show that outer measure is countably sub-additive, i.e. for sets
A1,A2, . . .⊆ R the relation

m∗
(

∞⋃
n=1

An

)
≤

∞

∑
n=1

m∗(An)

is satisfied. [7]

(e) Prove that for any constant c≥ 0 and set A⊆ R the outer measure obeys

m∗(cA) = cm∗(A),

where cA := {cx : x ∈ A}. [5]

Question 2. [25 marks]

(a) State the definition of a measurable set E ⊆ R. [3]

(b) Using this definition, show that any null set is measurable. You may use that
the outer measure of a null set A⊂ R satisfies m∗(A) = 0. [3]

(c) Show that for any measurable set E ∈M and constant c≥ 0 the set cE is
also measurable. You may use that outer measure satisfies m∗(cA) = cm∗(A)
for all c≥ 0 and A⊆ R. [4]
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(d) State what it means for Lebesgue measure to be countably additive and then
use this to show that if E1,E2, . . . ∈M are a sequence of measurable sets
such that En ⊂ En+1 for all n, then

m

(
∞⋃

n=1

En

)
= lim

n→∞
m(En).

[6]

(e) State the three properties required for F to be a σ -field on the set Ω⊆ R. [2]

(f) Suppose we have a game in which the outcome is either a win (W), a loss (L)
or a draw (D).

(i) Let F be the collection of all subsets of Ω = {W,L,D}. Show that F
is a σ -field. [3]

(ii) What is the σ -field FW generated by the event {W}? [2]

(iii) Give an example of a probability measure on the σ -fields F and FW . [2]

Question 3. [20 marks]

(a) Give the definition of a measurable function f : R→ R. [3]

(b) State an alternative equivalent definition to the one provided in Part (a). [3]

(c) Suppose that f is a measurable function. Using your answer to Part (b), or
otherwise, show that the truncation of f , given by

f a(x) =
{

a if f (x)> a
f (x) if f (x)≤ a,

is also measurable. [3]

(d) A function f is said to be monotonically increasing if for all x < y it satisfies
f (x)≤ f (y). Using your answer to Part (b), or otherwise, show that every
monotonically increasing function is measurable. [5]

(e) State the definition of a random variable X on a probability space
(Ω,F ,P). [2]

(f) Let X : [0,1]→ R be the random variable given by

X(ω) =
1
2

1[0, 1
3 )
(ω)+

3
2

1[ 1
3 ,

2
3 ]
(ω)+1( 2

3 ,1]
(ω),

where 1E(ω) denotes the indicator function over a set E ⊆ R. What is the
σ -field generated by X? [4]
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Question 4. [30 marks]

(a) State the definition of a simple function φ and its Lebesgue integral∫
E φ dm for a measurable set E ⊆ R. [2]

(b) State the definition of the Lebesgue integral
∫

E f dm for a non-negative
measurable function f and measurable set E ⊆ R. [2]

(c) Let f and g be two non-negative measurable functions and suppose f ≤ g on
the measurable set E ⊆ R. Show that∫

E
f dm≤

∫
E

g dm.

[4]

(d) Let f be a non-negative measurable function and E ⊆ R a measurable set
such that a≤ f (x)≤ b for all x ∈ E. Using Part (c), or otherwise, show that

am(E)≤
∫

E
f dm≤ bm(E).

[3]

(e) (i) State what it means for a function f to be equal to zero almost
everywhere on R. [2]

(ii) Let f : R→ R be a non-negative measurable function. Using Part (c),
or otherwise, show that if

∫
R f dm = 0 then f = 0 almost everywhere

on R. [4]

(f) State Fatou’s Lemma for a sequence of measurable functions { fn}. [3]

(g) State the Monotone Convergence Theorem. [4]

(h) Use Fatou’s Lemma to prove the Monotone Convergence Theorem. [6]

End of Paper.
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