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Standing Assumptions: (Ω,F ,m) denotes a measure space; f : Ω→ R and g : Ω→ R
are real valued functions on Ω.

Question 1 In questions 1(a)–1(e), the term measurable means Lebesgue measurable.

(a) Given a subset A⊆ [a,b], how is its outer measure m∗(A) defined? [3]

(b) Use the definition of m∗ to prove that if A1,A2,A3, . . . are subsets of [a,b], then [6]

m∗
(

∞⋃
n=1

An

)
≤

∞

∑
n=1

m∗(An) .

(c) Give the definition of a null set. Prove that if B is a null set then m∗(A∪B) = m∗(A). [4]

(d) When do we say that a subset A⊂ [a,b] is measurable? [1]

(e) Prove that open and closed subsets of [a,b] are measurable. [9]

You may assume without proof that
i) every open set in R is a countable union of disjoint open intervals,
ii) m∗(∪n

j=1I j) = ∑
n
j=1 l(I j), where {I j, 1≤ j ≤ n} is a collection of disjoint intervals.

(f) Let m be a σ -additive measure on (Ω,F ). Assuming that [5]
m(
⋃

∞
n=1 An) = limn→∞ m(An) whenever A1⊆A2⊆A3⊆ . . . are measurable, prove that

if B1 ⊇ B2 ⊇ B3 ⊇ . . . are measurable and m(B1)< ∞, then

m

(
∞⋂

n=1

Bn

)
= lim

n→∞
m(Bn) .

.

Question 2 (a) Give the definition of a σ -field of subsets of a set Ω. [2]

(b) Consider a measurable space (Ω,F ) and a function f : Ω→ R. Prove that the fol-
lowing two definitions of measurability of f are equivalent:
i) f is measurable if {ω : f (ω) ∈ (a,b)} ∈F for any a,b ∈ R.
ii) f is measurable if {ω : f (ω)< a} ∈F for all a ∈ R. [5]

(c) Let f : Ω→R and g : Ω→R be measurable functions. Prove that f +g is measurable. [5]

(d) Prove that if fn : Ω→ R, n = 1,2, ... are measurable functions then liminfn→∞ fn is a
measurable function. [5]

(e) Let fn : Ω→R, n = 1,2, ..., be a sequence of measurable functions. Prove that the set
of points in Ω where limn→∞ fn exists is measurable. You may assume without proof
that liminfn→∞ fn and limsupn→∞ fn are measurable functions. [5]
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Question 3 (a) Define what is the integral of a non-negative measurable function f : Ω→
R. [3]

(b) State and prove the Monotone Convergence Theorem. [10]

(c) Use the Monotone Convergence Theorem to prove the Fatou Lemma. [5]

(d) State (do not prove) the Beppo–Levi Theorem. [3]

(e) Use the Beppo-Levi Theorem, and the fact that ∑n≥1
1
n2 =

π2

6 , to prove that [5]

∫
∞

0

e−xx
1− e−x dx =

π2

6
.

Question 4 (a) Let L 1 be the space of integrable functions on (Ω,F ,m).

Briefly explain how the space L1 is defined and what is the definition of the norm of a
function f ∈ L1?

What is the definition of the distance between two functions f and g in a normed
space X?

What is a Cauchy sequence of elements fn, n≥ 1, of a normed space X?

What does it mean to say that a normed space X is complete? [5]

(b) Use the Beppo–Levi Theorem to prove the completeness of the space L1. [10]

(c) Given two measures µ and ν on (Ω,F ), what does it mean to say that µ is absolutely
continuous with respect to ν? State the Radon–Nikodym Theorem. [4]

(d) Give the definition of a signed measure on (Ω,F ). Explain what is the Hahn decom-
position of Ω for a given signed measure. [5]

End of Paper
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