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Question 1. Let GG be a group and let €2 be a set.

(a) What is meant by an action of GG on (2?

(b) Suppose that G acts on €2, and let a € (2.

(i) What is meant by the orbit Orbg(«) of a, and what is meant by the stabiliser
Stabg(a) of @? What does it mean to say that G acts transitively on (2?

(ii) Prove that Stabg(«) is a subgroup of G.
(iii) Let g € G and let H = Stabg(«). Prove that Stabg(ag) = g ' Hg.

(iv) Deduce that if G acts transitively on 2 then the set {Stabg(5) : § € Q}isa
conjugacy class of subgroups of G.

Question 2. Let G be a group.

(a) Define what is meant by the commutator [g, h] of elements g, h € GG, and what is
meant by the commutator subgroup (or derived group) G’ of G. What is meant by a
normal subgroup of G and what is meant by a maximal subgroup of G?

(b) Prove that if N is a normal subgroup of G such that G /N is abelian, then G’ is a
subgroup of N.

(c) Suppose G acts primitively on a set {2, and let NV be a normal subgroup of GG. Prove that
either /V acts trivially on €2 (that is, N lies in the kernel of the action), or N acts
transitively on (2.

(d) Suppose G has a faithful primitive action on a set {2, let a € €2, and suppose that there is
an abelian normal subgroup A of Stabg () with the property that the G-conjugates of
A generate G.

Prove that every non-trivial normal subgroup of GG contains the commutator subgroup
G'. [In other words, you are to prove Iwasawa’s Lemma. You may assume, without
proof, that since G acts primitively on €2, Stabg () is a maximal subgroup of G.]
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Question 3.
(a) What is meant by a permutation of {1, ..., n}, what is meant by an even permutation
of {1,...,n}, what is meant by the alternating group A, and what does it mean to
say that a group G is simple? [8]
(b) Prove that the alternating group As is simple. [ You may state, without proof, the sizes
of the conjugacy classes of the group As.] [7]
(c) Prove that the alternating group A,, is simple, for all n > 5. [You may assume, without
proof, that the group A,, acts primitively on {1,...,n}.] (9]
Question 4.

(a) Let F be afield, letn > 1,let V = F", and let a be a non-zero vector in V.
(i) Define what is meant by a transvection 7'(a, f) on V, and what is meant by the
transvection group A(a). (4]
(ii) Prove thatif g € GL(n, F') then g ' A(a)g = A(ag). [6]
(b) For each group
GL(2,7), SL(2,7), PGL(2,7), PSL(2,7),
determine the order of the group and whether the group is simple. [You should briefly

justify your answers. ] [10]

(c) Determine a composition series for GL(2, 4), and the corresponding list of composition
factors. [You are not required to justify your answers.] [5]

End of Paper.
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