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Question 1 [12 marks].

(a) Show that the exponential distribution with mean θ−1 is an exponential family
distribution [6]

(b) Identify the natural parameter. [3]

(c) If a random sample of n exponentially distributed observations is collected write
down a one-dimensional sufficient statistic for θ based on n observations. [3]

Question 2 [25 marks]. Let x1, . . . , xn be a random sample from a Uniform(0, θ)
distribution.

(a) Suppose that we put a Pareto prior on θ with density function

p(θ) =
αθα0
θα+1

for θ ≥ θ0 and α > 0. Find the posterior density of θ, including all appropriate
normalizing constants. [10]

(b) Let θtrue be the true value of θ. Describe what happens to the posterior density of
θ as n→∞. [5]

(c) Find the optimal estimator of θ under the loss function

L(t, θ) =
(t− θ)2

t

where t is an estimator of θ. [10]

Question 3 [23 marks].

Consider a random sample x1, . . . , xn from a distribution with density

p(x|θ) = θ exp(−xθ)

with x ≥ 0 and θ > 0.

(a) What is the Jeffreys’ prior for θ? [10]

(b) Suppose we reparametrize the model via µ = 1/θ. Derive the Jeffreys’ prior in
this new parametrization. [8]

(c) Transform the Jeffreys’ prior you have obtained in a) to the µ parametrization
used in b). How does it compare to Jeffreys’ prior you have computed in b)? [5]
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Question 4 [15 marks].

(a) Consider a random sample x1, . . . xn from a Bernoulli(θ) distribution. We observe

x1 = x2 = · · · = xn = 0.

We would like to compare two Bayesian models for this data.

H0 : θ = 1/2 versus H1 : θ ∼ Uniform(0, 1).

We assume equal prior probabilities for H0 and H1 ie., π0 = π1 = 1/2. Find the
posterior probability α0 of H0 as a function of n. [10]

(b) Define a 100(1− α)% credible interval and a 100(1− α)% Highest Posterior
Density (HPD) interval for a parameter θ. What extra property does an HPD
interval have? [5]

Question 5 [25 marks]. The two-stage linear model is given by

y|θ1, C1, A1 ∼ N(A1θ1, C1)
θ1|µ,C2 ∼ N(µ,C2)

where A1, C1, C2 and µ are known.
A researcher is interested in analyzing the commute time of workers at a company in
Toronto as a function of the distance they live from the workplace. The assumption is
that commute time y (in minutes) is linearly related to the distance x (in km). Five
workers are surveyed and the commute time and distance are recorded.

x y
25 40
11 19
40 65
33 55
6 10

The simple linear regression model

yi = α + β(xi − x̄) + εi i = 1, . . . , 5

is appropriate for these data. Assume that the prior for α is normal with mean 0 and
variance 1, the prior for β is normal with mean 1.5 and variance 0.2, α and β are
independent and the εi are independent, normally distributed with mean zero and
variance 1.

(a) Show that this model can be written as a two-stage linear model and hence find
the posterior distributions of α and β. [15]

(b) Are the posterior distributions of α and β independent? Justify your answer. [5]
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(c) Describe how you would use Gibbs sampling to draw from the posterior
distribution of (α, β). [5]

End of Paper – An appendix of 3 pages follows.
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Bayesian Statistics – Common Distributions

Discrete Distributions

Distribution Density Range of Variates Mean Variance

Uniform 1
N

N = 1, 2, . . . N+1
2

N2−1
12

x = 1, 2, . . . , N
Bernoulli px(1− p)1−x 0 ≤ p ≤ 1, x = 0, 1 p p(1− p)

Binomial
(
n
x

)
px(1− p)n−x 0 ≤ p ≤ 1, n = 1, 2, . . . np np(1− p)

x = 0, 1, . . . n

Poisson exp(−λ)λx

x!
λ > 0, x = 0, 1, 2, . . . λ λ

Geometric p(1− p)x 0 < p ≤ 1, x = 0, 1, 2, . . . (1−p)
p

(1−p)
p2

Negative
(
r+x−1
x

)
pr(1− p)x 0 < p ≤ 1, r > 0 r(1−p)

p
r(1−p)
p2

Binomial x = 0, 1, 2, . . .

Continuous Distributions

Uniform 1
b−a −∞ < a < b <∞ a+b

2
(b−a)2

12

a < x < b

Normal N(µ, σ2) 1√
2πσ2

exp[−(x−µ)2

2σ2 ] −∞ < µ <∞ µ σ2

σ > 0, −∞ < x <∞
Normal No(µ, h)

√
h√
2π

exp[−h(x−µ)2

2
] −∞ < µ <∞ µ h−1

h > 0, −∞ < x <∞
Exponential λ exp(−λx) λ > 0, x ≥ 0 1

λ
1
λ2

Gamma Ga(α, β) βαxα−1 exp(−βx)
Γ(α)

α > 0, β > 0, x > 0 α
β

α
β2

Inverse-gamma IGa(α, β) βαx−α−1 exp(−β/x)
Γ(α)

α > 2, β > 0, x > 0 β
α−1

β2

(α−1)2(α−2)
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Distribution Density Range of Variates Mean Variance

Beta Be(a, b) Γ(a+b)
Γ(a)Γ(b)

xa−1(1− x)b−1 a > 0, b > 0, 0 < x < 1 a
a+b

ab
(a+b+1)(a+b)2

tν(m, g) g1/2Γ((ν+1)/2)√
(νπ)Γ(ν/2)

−∞ < x <∞ location m precision g,

×
[
1 + g

ν
(x−m)2

]−(ν+1)/2
dof ν

Fm
n

Γ[(m+n)/2]
Γ(m/2)Γ(n/2)

(
m
n

)m
2 m,n = 1, 2, . . . n

n−2
2n2(m+n−2)
m(n−2)2(n−4)

× x(m−2)/2

[1+(m/n)x](m+n)/2 x ≥ 0 for n > 2 for n > 4

χ2
k

1
Γ(k/2)2k/2

xk/2−1 exp(−x
2
) k = 1, 2, . . ., x > 0 k 2k

Pareto αβα

xα+1 α > 0, β > 0, x > β βα
(α−1)

β2α
(α−1)2(α−2)

End of Appendix.
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