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Question 1. [5 marks] A random sample of n observations are available from a
distribution with density p(x|θ). One model for the data is that θ = 3. An
alternative model is that θ has a prior p(θ).

(a) Define the marginal likelihood for each model and the Bayes Factor. [3]

(b) Explain how the Bayes Factor could be used to test which model is better
supported by the data. [2]

Question 2. [20 marks] A radioactive device gives hourly counts which are
assumed to have a Poisson distribution with mean λ. In fifteen hours the total
count was 35.

(a) Scientist A has no experience with this device and so adopts a Jeffreys’ prior
for λ. Compute this prior and the resulting posterior. [6]

(b) Scientist B has more experience and adopts a Gamma prior with mean 2.0
and variance 0.4. Find this prior and show that the resulting posterior has a
mean which is a weighted average of the prior mean and the data mean. [6]

(c) Scientist C adopts a mixture prior

p(λ) = 0.9Ga(20, 10) + 0.1Ga(2, 1).

Compute her posterior distribution.

You should leave the posterior weights as an expression that can be evaluated. [6]

(d) What is the advantage of using a mixture of conjugate priors over a single
conjugate prior? [2]

Question 3. [17 marks]

(a) Show that a single Bernoulli trial x with probability of success θ can be
written in exponential family form. [3]

(b) Identify the natural parameter. [1]

(c) If a random sample of n Bernoulli trials x1, x2, . . . , xn is carried out, write
down a minimal sufficient statistic for θ. [1]

(d) Show that a Beta distribution is a conjugate prior for θ by finding the density
of the posterior distribution of θ. [3]

(e) Define a 100(1− α)% Highest Posterior Density (HPD) interval for θ and
show that if the posterior is unimodal then it is shorter than any other
100(1− α)% credible interval. [5]

(f) If ten Bernoulli trials result in eight successes and the prior is Be(5, 3), find
the 95% HPD interval for θ using the appropriate table in the New
Cambridge Statistical Tables. [4]
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Question 4. [18 marks] A random variable X has a Galenshore(a, θ)
distribution if its density is given by

p(x|a, θ) =
2

Γ(a)
θ2ax2a−1 exp(−θ2x2) x > 0

where a and θ are positive parameters. For this distribution

E[X] =
Γ(a+ 0.5)

θΓ(a)
.

Assume that a is known and consider X1, . . . , Xn independent observations from a
Galenshore(a, θ).

(a) Suppose that a Galenshore(α, β) prior is assumed for the parameter θ. Show
that the posterior distribution of θ given X1, . . . , Xn is a Galenshore(a?, θ?)

distribution where a? = na+ α and θ? =
√
β2 +

∑
X2
i . [6]

(b) If a = 1, find the posterior mean of θ. [2]

(c) Suppose now that a = 1, α = 1 and β = 1. Find the density of the predictive
distribution of a new observation Y from a Galenshore(1, θ) distribution. [6]

(d) If n = 2 and X1 = 0.5 and X2 = 1, find the probability that the new
observation Y satisfies Y > 1. [4]
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Question 5. [22 marks]

(a) A two stage linear model is given by

y|θ1 ∼ N(A1θ1, C1)

θ1|µ ∼ N(µ,C2)

where y is a n× 1 vector, θ1 a p× 1 vector and A1, C1, C2, and µ are assumed
known.

(i) Find the marginal distribution of y. [4]

(ii) Show that the posterior distribution of θ1 can be written in the form
N(Bb,B) where

B−1 = AT1 C
−1
1 A1 + C−1

2

b = AT1 C
−1
1 y + C−1

2 µ

[4]

(iii) Hence show that the posterior mean is a weighted average of the least
squares estimate and the prior mean. Discuss the form of the weights. [4]

(b) In a clinical trial to test a new drug which is thought to reduce blood
pressure five patients were given a placebo and five patients the new drug.
The reduction in blood pressure six hours after giving the drug was recorded
as follows

Placebo 3 −2 4 -1 2
Drug 11 7 12 10 14

The reduction in blood pressure may be modelled as y ∼ N(γ, 3) for patients
receiving the placebo and y ∼ N(γ + δ, 3) for patients receiving the new drug.
Thus δ represents the effect of the drug over any placebo effect. Based on
previous studies the prior for γ is N(2, 1) and for δ is N(6, 6) and they are
independent.

(i) Show that this problem can be written as a two-stage linear model and
find the posterior distributions of γ and δ. [7]

(ii) A physician says that he will only use the new drug if the posterior
probability that the effect is more than 6 is 0.99 because of the
possibility of side effects. Would this study convince the physician to use
the drug? [3]
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Question 6. [18 marks]

(a) It is desired to estimate the posterior means of three parameters, θ, δ and φ.
The full conditional distributions,

p(θ|δ, φ,data), p(δ|φ, θ, data), p(φ|θ, δ,data)

are known. Explain how the posterior means may be estimated using the
Gibbs sampling method. [6]

(b) Lifetimes of electric light bulbs in the ith production run are described by a
distribution with density

p(x|θi) = θi exp(−θix) x > 0, θi > 0.

The parameter θi varies from run to run depending on the quality of tungsten
used for the filaments, and this variability in θi is described by a Gamma
distribution, Ga(α, β). The parameter α is known but β is unknown and is
assumed to have a Gamma distribution, Ga(γ, δ). From each of p production
runs, n bulbs are chosen at random and have lifetimes xij for i = 1, . . . , p and
j = 1, . . . , n.

(i) Compute the full conditional distributions necessary for Gibbs sampling
and explain how this would proceed. [8]

(ii) Explain how you would amend the Gibbs sampling procedure if any
bulb with a lifetime of d or more were censored at d. [4]

End of Paper—An appendix of 2 pages follows.
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Bayesian Statistics – Common Distributions

Discrete Distributions

Distribution Density Range of Variates Mean Variance

Uniform 1
N N = 1, 2, . . . N+1

2
N2−1

12
x = 1, 2, . . . , N

Bernoulli px(1− p)1−x 0 ≤ p ≤ 1, x = 0, 1 p p(1− p)

Binomial
(
n
x

)
px(1− p)n−x 0 ≤ p ≤ 1, n = 1, 2, . . . np np(1− p)

x = 0, 1, . . . n

Poisson exp(−λ)λx

x! λ > 0, x = 0, 1, 2, . . . λ λ

Geometric p(1− p)x 0 < p ≤ 1, x = 0, 1, 2, . . . (1−p)
p

(1−p)
p2

Negative
(
r+x−1
x

)
pr(1− p)x 0 < p ≤ 1, r > 0 r(1−p)

p
r(1−p)
p2

Binomial x = 0, 1, 2, . . .

Continuous Distributions

Uniform 1
b−a −∞ < a < b <∞ a+b

2
(b−a)2

12

a < x < b

Normal N(µ, σ2) 1√
2πσ2

exp[−(x−µ)2

2σ2 ] −∞ < µ <∞ µ σ2

σ > 0, −∞ < x <∞
Normal No(µ, h)

√
h√
2π

exp[−h(x−µ)2

2 ] −∞ < µ <∞ µ h−1

h > 0, −∞ < x <∞
Exponential λ exp(−λx) λ > 0, x ≥ 0 1

λ
1
λ2

Gamma (α, β) βαxα−1 exp(−βx)
Γ(α) β > 0, α > 0, x > 0 α

β
α
β2
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Distribution Density Range of Variates Mean Variance

Beta (a, b) Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1 a > 0, b > 0, 0 < x < 1 a
a+b

ab
(a+b+1)(a+b)2

tν(m, g) g1/2Γ((ν+1)/2)√
(νπ)Γ(ν/2)

−∞ < x <∞ location m precision g,

×
[
1 + g

ν (x−m)2
]−(ν+1)/2

dof ν

Fmn
Γ[(m+n)/2]

Γ(m/2)Γ(n/2)

(
m
n

)m
2 m,n = 1, 2, . . . n

n−2
2n2(m+n−2)
m(n−2)2(n−4)

× x(m−2)/2

[1+(m/n)x](m+n)/2 x ≥ 0 for n > 2 for n > 4

χ2
k

1
Γ(k/2)2k/2

xk/2−1 exp(−x
2 ) k = 1, 2, . . ., x > 0 k 2k

Pareto αβα

xα+1 α > 0, β > 0, x > β βα
(α−1)

β2α
(α−1)2(α−2)

End of Appendix.
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