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Question 1. [40 marks]
Consider the adjacency matrix A of a network of size N = 5 given by

A =




0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 0
1 0 1 1 0




.

a) Draw the network. Is the network directed or undirected? (Explain your answer.) [7]

b) How many weakly and how many strongly connected components are there in
the network? Which are the nodes belonging to each one of these components? [4]

c) Is there an in-component? If yes, which are the nodes belonging to it? [3]

d) Is there an out-component? If yes, which are the nodes belonging to it? [3]

e) Determine the in-degree sequence {kin
1 , kin

2 , kin
3 , kin

4 , kin
5 } and the out-degree

sequence {kout
1 , kout

2 , kout
3 , kout

4 , kout
5 }. [4]

f) Determine the in-degree distribution Pin(k) and the out-degree distribution
Pout(k). [4]

g) Calculate the N × N matrix d of elements dij ∈ N0 ∪ {∞} indicating the
shortest distance of node j from node i. [5]

h) Calculate the eigenvector centrality xi of each node i = 1, 2, . . . , N of the
network with adjacency matrix A defined above.
To this end start from the initial guess x(0) = 1

N 1 where 1 is the N-dimensional
column vector of elements 1i = 1 ∀i = 1, 2 . . . , N. Consider the iteration

x(n) = Ax(n−1),

for n ∈ N.
Finally, calculate the eigenvector centrality xi of each node i of the network by
finding the limit

xi = lim
n→∞

x(n)i

∑N
j=1 x(n)j

.

[10]
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Question 2. [25 marks]
Giant component of the random graph.
Consider a random graph ensemble G(N, p) formed by all networks of N nodes with
each pair of nodes connected with probability p.
Take

p =
c

N − 1
with c > 0 indicating the average degree of the network.
Let S indicate the probability that a node is in the giant component.
A node i is not in the giant component of a random graph if for every other node j of
the graph either one of the following events occurs:
i) i is not linked to j;
ii) i is linked to j but j doesn’t belong to the giant component.

a) Show that in the large network limit N � 1, the probability S satisfies the
equation

S = 1 − e−cS,

where c is assumed to be independent of the network size N. [7]

b) Show that the critical average degree for having a giant component in the limit
of large N is c = 1. [10]

c) Show that the average degree c that ensures that the random network is
connected, i.e. it is formed by a single connected component, is approximately
given by

c � ln(N). [8]
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Question 3. [35 marks]
Growing network model
Consider the following growing network model with preferential attachment in
which each node i is assigned an attractiveness a = 3.
Let N(t) denote the total number of nodes at time t.
At time t = 1 the network is formed by two nodes joined by a link.

- At every time step a new node joins the network. Every new node has initially
two links that connect it to the rest of the network.

- At every time step t > 1 each new link of the new node is attached to an
existing node i of the network chosen with probability Πi given by

Πi =
(ki + a)

Z
,

where
Z = ∑

j=1,...,N(t−1)
(kj + a).

a) Calculate the total number of nodes N(t) and the total number of links L(t) at
time t. [2]

b) Calculate the value of the average degree �k� at any given time t and in the limit
t → ∞. [3]

c) Derive the time evolution ki = ki(t) of the average degree ki of a node i in the
mean-field approximation and in the limit t � 1. [7]

d) Derive the degree distribution P(k) of the network for large times, i.e. t � 1, in
the mean-field approximation. [7]

e) Is this network scale-free? (Explain your answer). [3]

f) Write the master equation for the average number Nk(t) of nodes that at time t
have degree k. [2]

g) Solve the master equation obtained in part f) and derive the corresponding
degree distribution P(k). [11]

End of Paper.
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