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Question 1. [40 marks]

Structural properties of a given network.
Consider the adjacency matrix A of a network of size N = 5 given by

01100
10100
A=]100000
10000
10000

a) Draw the network. Is the network directed or undirected? (Explain your answer.) [7]

b) How many weakly and how many strongly connected components are there in
the network? Which are the nodes belonging to each one of these components? [4]

¢) Is there an in-component? If yes, which are the nodes belonging to it? [3]
d) Is there an out-component? If yes, which are the nodes belonging to it? [3]

e) Determine the in-degree sequence {kiln, kg”, ké”, ki”, ké”} and the out-degree
sequence {kg”t, kg”t, kg“t, ki“f,kg”t}. [4]

f) Determine the in-degree distribution P (k) and the out-degree distribution
pout(k). [4]

g) Calculate the N x N matrix d of elements d;; € INg U {c0} indicating the
shortest distance of node i from node j. [5]

h) Calculate the eigenvector centrality x; of eachnodei =1,2,..., N of the
network with adjacency matrix A defined above.
To this end start from the initial guess x(0) = %1 where 1 is the N-dimensional

column vector of elements 1; =1Vi =1,2..., N. Consider the iteration

x(n) — Ax(n_l)’
for n € IN.
Finally, calculate the eigenvector centrality x; of each node i of the network by
finding the limit
NG
X; = lim L

P YN )
Li=1%

[10]
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Question 2. [25 marks]

Uncorrelated networks
Consider an uncorrelated network with degree distribution P (k).

a) Express in terms of the degree distribution P(k), the probability g(k) that, by
following a link, we reach a node of degree k.
Show that the average degree k;,;;, of the neighbours of a node is given by

(k)

knn:_

(k)
where (...) denotes the average over the degree distribution P (k). [3]

b) Under which conditions it is true that
knn > (k),

i.e. the average degree of the neighbours of a node is larger that the average
degree of the network? [4]

¢) Under which conditions it is true that

i.e. the average degree of the neighbours of a node is equal to the average
degree of the network? [1]

d) Under which conditions it is true that
knn < (k),

i.e. the average degree of the neighbours of a node is less than the average
degree of the network? [1]

e) Consider a random Poisson network with average degree (k) = 3. Calculate k;,
and verify that k,,, > (k). [5]

f) Consider an infinite power-law network with degree distribution P(k) = Ck™7
withy =22and k > 1.
Calculate (k) , (k*) and ky, in the continuous approximation. [10]

g) For the power-law network defined in part f), is k,,, > (k)? [1]
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Question 3. [35 marks]

A growing network model with attractiveness of the nodes

Consider the following growing network model in which each node i is assigned an
attractiveness a; € N* drawn from a distribution 7t (a).

Let N(t) denote the total number of nodes at time ¢.

At time t = 0 the network is formed by two nodes joined by a link.

- Atevery time step a new node joins the network. Every new node has initially
a single link that connects it to the rest of the network.

- At every time step t the link of the new node is attached to an existing node i of
the network chosen with probability I1; given by

where
j=1,...,N(t—1)

a) Calculate the total number of nodes N () and the total number of links L(t) at
time t. [4]

b) What is the average degree (k) of the network at time #? [2]

¢) Assume that
Z ~ at,

where 7 indicates the average of a over the distribution 77 (a).
Derive the time evolution k; = k;(t) of the average degree k; of a node i in the
mean-field approximation. [9]

d) Assume that

o(a) = 1 for a=1,
10 for a#1,

and that Z ~ at.
Derive the degree distribution P(k) of the network for large times, i.e. t > 1, in
the mean-field approximation. [7]

e) Under the same hypothesis as in part d) write the master equation for the

average number N () of nodes that at time ¢ have degree k. [3]
f) Solve the master equation obtained in part e) and derive the corresponding
degree distribution P(k). [10]
End of Paper.
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