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Question 1. [30 marks]
Structural properties of a given network.
Consider the adjacency matrix A of a network of size N = 4 given by

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 .

a) Is the network directed or undirected? (Justify your answer) [2]

b) Draw the network. [4]

c) How many weakly connected components are there in the network? Which
are the nodes in each weakly connected component? [2]

d) How many strongly connected components are there in the network? Which
are the nodes in each strongly connected component? [2]

e) Is there an out-component in the network? If yes, indicate the nodes in the
out-component of the network. [2]

f) Determine the in-degree sequence {kin1 , kin2 , kin3 , kin4 } and the out-degree
sequence {kout1 , kout2 , kout3 , kout4 }. [4]

g) Determine the in-degree distribution P in(k) and the out-degree distribution
P out(k). [4]

h) Calculate the eigenvector centrality xi of each node i = 1, 2, . . . , N of the
network with adjacency matrix A given by Eq. (1).
To this end start from the initial guess x(0) = 1

N
1 where 1 is the

N -dimensional column vector of elements 1i = 1 ∀i = 1, 2 . . . , N .
Consider the iteration

x(n) = Ax(n−1)

for n ∈ N.
Finally evaluate the eigenvector centrality xi of each node i of the network
by calculating the limit

xi = lim
n→∞

x
(n)
i∑N

j=1 x
(n)
j

.

[8]

i) Is the result obtained in point h) expected? (Why?) [2]
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Question 2. [35 marks]
Diameter and clustering coefficient of networks

a) Which is the undirected network of N nodes with smallest diameter?
Does this network have the small-world distance property? Why? [5]

b) Which is the undirected network of N nodes which is connected and has the
largest diameter?
Does this network have the small-world distance property? Why? [5]

c) Consider a random Poisson network with average degree 〈k〉 = 4 and total
number of nodes N .
Indicate with ` the average shortest path in the network.

i) Using the properties of the generating function evaluate the average
branching ratio of a node reached by following a link given by
〈b〉 = 〈k(k−1)〉

〈k〉 . [6]

ii) Approximate the number of nodes Nd at distance d ≥ 1 from a random

node of the network as Nd = 〈k〉
(
〈k(k−1)〉
〈k〉

)d−1
and show that Nd = 4d. [3]

iii) Using the properties of the geometric sum, evaluate the total number
Nd≤` of nodes at distance 0 ≤ d ≤ ` from a random node of the
network. [4]

iv) Impose that all the nodes of the Poisson network can be found within a
distance d ≤ ` from any random node. Using the result obtained in (ii),
express the average distance ` of the Poisson network in terms of the
total number of nodes N . [4]

v) Consider the expression found in (iii).
Find the leading term of ` in terms of the total number of nodes N in
the network, when N � 1. [4]

vi) Estimate the local clustering coefficient of a generic node of the
network. [4]
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Question 3. [35 marks]
Growing network model
Consider the following model for a growing simple network.
We adopt the following notation: N and L indicate respectively the total number of
nodes and links of the network, Air indicates the generic element of the adjacency
matrix A of the network and ki indicates the degree of node i.
At time t = 0 the network is formed by a n0 = 2 nodes and a single link (initial
number of links m0 = 1) connecting the two nodes.
At every time step t > 0 the network evolve according to the following rules:

- A single new node joins the network.

- A link (i, r) between a node i and a node r is chosen randomly with uniform
probability

π(i,r) =
Ai,r

L

and the new node is linked to both node i and node r.

a) Show that in this network evolution at each time step the average number of
links Π̃i added to node i follows the preferential attachment rule, i.e.

Π̃i =
N∑
r=1

π(i,r) = 2
ki∑N
j=1 kj

.

[6]

b) What is the total number of links in the network at time t? What is the total
number of nodes? [2]

c) What is the average degree 〈k〉 of the network at time t? [4]

d) Use the result at point a) to derive the time evolution ki = ki(t) of the average
degree ki of a node i for t� 1 in the mean-field, continuous approximation. [6]

e) What is the degree distribution of the network at large times in the mean-field
approximation? [6]

f) Let Nk(t) be the average number of nodes with degree k at time t.
Write the master equation satisfied by Nk(t). [3]

g) Solve the master equation, finding the exact result for the degree distribution
P (k) in the limit N →∞. [8]

End of Paper.
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