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Question 1 (40 marks).
Structural properties of a given network.
Consider the adjacency matrix A of a directed network of size N = 3 given by

A =

 0 1 0
0 0 1
1 0 0

 .

a) Draw the network. [4]

b) Does the network contain a strongly connected component? If yes, which
nodes are part of the strongly connected component? [2]

c) Does the network contain an in-component? If yes, which nodes are part of
the in-component? [2]

d) Does the network contain an out-component? If yes, which nodes are part of
the out-component? [2]

e) Calculate the eigenvector centrality x of the nodes of the network with
adjacency matrix A satisfying

λ1x = Ax,

1 =
∑
i

xi, (1)

where λ1 is the Perron-Frobenius eigenvalue of the matrix A. [13]

f) Calculate the Katz centrality x satisfying

x = β(I− αA)−11 (2)

where α ∈ (0, 1/λ1), β > 0, I is the identity matrix and 1 is the column
vector of elements 1i = 1 ∀i ∈ {1, 2, 3}. [16]

g) Is there a difference in the ranking provided by the eigenvector centrality
(part e)) and the Katz centrality (part f))? [1]
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Question 2 (25 marks).
Random networks in the G(N, p) ensemble
Consider the network ensemble G(N, p) formed by all networks of N nodes with
each pair of nodes connected with probability p.

a) Show that the degree distribution P (k) of a generic network in this ensemble
is a binomial given by

P (k) =

(
N − 1
k

)
pk(1− p)N−1−k. (3)

[5]

b) Calculate the generating function

G(x) =
N−1∑
k=0

P (k)xk (4)

for the binomial degree distribution P (k) given by equation (3) [6]

c) Using the properties of the generating function, evaluate the first moment 〈k〉
and the second moment 〈k(k − 1)〉 of the degree distribution P (k) given by
equation (3). [4]

d) Using the results of part c) calculate the variance σ2 and the standard
deviation σ of the degree distribution P (k) given by equation (3). [5]

e) Calculate the average degree 〈k〉 of a random network in the ensemble
G(N, p) with N = 10001 nodes, and the linking probability is p = 10−2. [2]

f) Does the network of part e) have a giant component ? Justify your answer. [3]
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Question 3 (35 marks).
Growing network model with uniform attachment
Consider the following model for a growing network with uniform attachment. At
time t = 0 the network is formed by a connected network of n0 > m nodes.

- At every time step a single new node joins the network, so that at time t there
will be exactly N(t) = n0 + t nodes. Every new node has initially m links.

- Each new link is attached to an existing node of the network. The target node
i is chosen with probability Πi following a uniform attachment rule
Πi = 1

N(t)
.

a) What is the time evolution ki = ki(t) of the average degree ki of a node i for
t� 1 in the mean-field, continuous approximation? [9]

b) What is the degree distribution of the network at large times in the mean-field
approximation? [9]

c) What is the average degree 〈k〉 of the network? [4]

d) Let N t(k) be the average number of nodes with degree k at time t.
Write the master equation satisfied by N t(k). [4]

e) Solve the master equation, finding the exact results for the degree distribution
P (k) in the limit N →∞. [9]

End of Paper.

c© Queen Mary, University of London (2016)


