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Question 1 (40 marks).
Structural properties of a given network
Consider the adjacency matrix A of a network of size N = 7 given by

A =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0


.

• a) Is the network directed or undirected? (Give reasons) [6]

• b) Draw the network. [6]

• c) Write the in-degree sequence {kin
1 , kin

2 , kin
3 , kin

4 , kin
5 , kin

6 , kin
7 } and the out-

degree sequence {kout
1 , kout

2 , kout
3 , kout

4 , kout
5 , kout

6 , kout
7 }. [4]

• d) Write the in-degree distribution of the network P in(k) and the out degree
distribution of the network P out(k) for k = 0, 1, 2, 3, 4, 5, 6. [4]

• e) How many weakly connected components has the network? [2]

• f) List the nodes in each of the weakly connected components. [2]

• g) Does the network contain a strongly connected component? If yes, which
nodes are part of the strongly connected component? [2]

• h) Define the eigenvector centrality x. Calculate the eigenvector centrality x
of the nodes of the network with adjacency matrix A. [10]

• i) Is the result obtained in point h) expected? (Give reasons). [4]
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Question 2 (25 marks).
Diameter of a Cayley tree
A Cayley tree is a symmetric regular tree constructed starting from a central node
of degree k (see figure 1 for an example of a Cayley tree with k = 3).
In a Cayley tree network every node at distance d from the central node has degree k
until we reach the nodes at distance P that have degree one and are called the leaves
of the network. In this question take k = 3.

• a) Show that the number of nodes at distance d from the central node, is
3× 2d−1 for d ∈ [1,P ]. [5]

• b) Using the properties of the geometric sum, show that the total number of
nodes in the network is given by N = 1 + 3

[
2P − 1

]
. [5]

• c) Show that the diameter D is given by D = 2P . [2]

• d) Using the results obtained in (b) and (c), express the diameter D of the
network in terms of the total number of nodes N . [5]

• e) Consider the expression found in point (d).
Find the leading term of D in terms of the total number of nodes N in the
network, in the limit N � 1. [5]

• f) Does the network display the small-world distance property? [3]
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Figure 1: A Cayley tree network with k = 3 and P = 3.
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Question 3 (35 marks).
Growing network model
The growing network models with preferential attachment generate networks that
exhibit a power-law degree distribution. Consider the following model. At time
t = 0 the network is formed by two nodes joined by a link.

• At every time step a single new node joins the network, so that at time t there
will be exactly N = 2 + t nodes. Every new node has initially m = 1 links.

• Each new link is attached to an existing node of the network. The target node
i is chosen with probability Πi following the modified preferential attachment
rule Πi = ki+APN

j=1(kj+A)
, where ki is the degree of the node i and A > −1.

• a) What is the time evolution ki = ki(t) of the average degree ki of a node i
in the mean-field, continuous approximation? [7]

• b) What is the degree distribution of the network at large times in the mean-
field approximation? [7]

• c) Using the degree distribution obtained in part (b) and assuming that the
maximal degree of the network is K = t1/(2+A), calculate 〈k2〉 in the contin-
uous approximation. [7]
Note that 〈. . .〉 indicates the average over the degree distribution of the net-
work.

• d) For which values of A are the networks generated by this model scale-free?
Hint: Comment on the limit of 〈k2〉 for t→∞. [2]

• e) Let N(k) be average number of nodes with degree k.
Write the master equation satisfied by N(k). [3]

• f) Solve the master equation finding the exact results for the degree distribu-
tion P (k) in the limit N →∞. [9]

End of Paper.
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