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In this exam N = {0,1,2,...}.

Question 1 [25 marks].  Let (Xg, X1, Xs,...,) be the discrete-time, homogeneous
Markov chain on state space S = {1,2,3,4} with Xy = 1 and transition matrix

0 1/4 1/4 1/2
0 0 3/4 1/4
1/4 3/4 0 0
1/2 1/4 1/4 0

(a) Find the following probabilities:

) B(X; =2 Xo= 1)
(i) P(Xa # 1] Xo=1)

(b) Explain why the chain has a limiting distribution. Your explanation should refer

to any results from lectures that you use.

(c¢) Explain how to find this limiting distribution. Your explanation should refer to

any results from lectures that you use.

(d) What is the limiting distribution of this Markov chain?

(e) For each of the following, say whether the limiting distribution enables you to

write down a good approximation to it valid for large .

If the answer is Yes give

the numerical value of this approximation; if the answer is No indicate briefly how
you would calculate it by a different method (you do not need to give all the

details or the numerical value):

(i) The probability that the chain is in an odd-numbered state at time ¢.

(ii) The expectation of the proportion of time spent in state 4 up to time ¢.

(iii) The expectation of the time of the third visit (including the one at time 0) to

state 1.

(iv) The probability that the chain visits state 4 before state 3.
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Question 2 [25 marks].

(a) Give an example of a statement involving recurrence and transience which holds
for chains with finite state space but not for chains with infinite state space. 4]

Let (Xo, X1, Xo,...) be the discrete-time, homogeneous Markov chain on state space
S =7 with Xy =1 and transition probabilities

Piite = Pii—o = 1/2if i > 4 is even
poa =1
Poo =1
Piit2 = Dii—2 = Dii—1 = 1/3if i > 0 is odd
Piic1 =pi—1 =1/2if i < —1

(b) Sketch a representative portion of the transition graph for this chain. 6]
(c) Give a general description of how the chain will evolve. 4]
(d) Write down the communicating classes of this chain. 5]
(e) Classify each state as being transient, null recurrent or positive recurrent giving

brief reasons. 6]

(You may use properties of the Markov chains we discussed as examples in lectures
without proof provided you state clearly what you are refering to.)

Question 3 [25 marks]. In this question you may use properties of the Poisson
process as given in lectures provided that you state which properties you are using.

I am counting bicycles passing my house. Each one is either a solo bike with a single
rider, or a tandem with two riders. Solo bikes passing my house form a Poisson process
of rate 5 per minute; tandems passing my house form a Poisson process of rate 1 per
minute. These two Poisson processes are independent.

(a) What can you say about the process which counts the total number of bicycles
passing my house? Justify your answer. 3]

(b) What is the expectation of the time that I wait until the third bicycle passes? 3]

(c) Calculate the probablility that:

(i) Exactly two tandems pass my house in the first ¢ minutes. 3]
(ii) Exactly two bicycles pass my house in the first ¢ minutes. 3]
(iii) Exactly two riders pass my house in the first ¢ minutes. 3]
(d) Is the process which counts the total number of riders passing my house a Possion
process? Justify your answer. 2]
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(e) Is the process which counts the total number of riders passing my house a birth
process? Justify your answer.

(f) Let R(t) be the number of riders who pass my house in the first ¢ minutes and
define
pij(t) =P(R(t +s) = j | R(s) = 1)

Use the Chapman-Kolmogorov relations to derive the forward differential
equation for pj ;(t) valid for all j > 2.

Question 4 [25 marks].

(a) A football team plays a sequence of matches each of which they either win, lose,
or draw. At the start of the season they have 0 points. For each match, they score
3 points if they win, 1 point if they draw and 0 points if they lose. Suppose that
each match is won with probablilty p,, and lost with probability p;, independently
of all other matches.

(i) You want to model the number of points accumulated as the season
progresses as a discrete-time, homogeneous Markov chain (X, X7, ...).
Describe how you would do this. Your description should specify what the
X, are in words, the state space, and the transition probabilities.

(ii) Suppose that we want to allow different probabilities of winning for different
matches (rather than a single p,,). Will your model still be a discrete-time,
homogeneous Markov chain. Explain briefly what (if anything) changes.

(iii) Suppose that we want to allow the probability of winning a match to depend
on whether the previous match was won or lost. Specifically, if the previous
match was won there will be a higher probability of winning the current
match than if the previous match was lost. Will your model still be a
discrete-time, homogeneous Markov chain. Explain briefly what (if anything)
changes.

(b) A long steel cable contains flaws which occur randomly along its length at a
constant rate of o per metre.

(i) Give a reasonable way of modelling the location of the flaws as a stochastic
process.
(ii) Say in words what the interarrival times for this process represent.

(iii) Each flaw is detected by an inspector with probability 5 independently of all
other flaws. What can you say about the process describing the location of
the undetected flaws? What concept does this illustrate?

End of Paper.
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