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Question 1 [13 marks]. This question is about a Markov chain (X0, X1, X2, . . .)
with finite state space S.

(a) State what is meant by the Markov property. [4]

(b) For states i, j ∈ S, define what is meant by the transition probability pi,j. [3]

(c) Let µ
(0)
i = P(X0 = i). Prove that

P(X0 = i0, X1 = i1, X2 = i2) = µ
(0)
i0
pi0,i1pi1,i2 .

State any standard results used. [6]

Question 2 [24 marks]. Daily weather is modelled by a Markov chain Xn on state
space S = {1, 2, 3} where 1 corresponds to a sunny day, 2 corresponds to a rainy day,
and 3 corresponds to a snowy day. The transition matrix of Xn is

P =


1
2

1
4

1
4

1
2

0 1
2

1
2

1
2

0

 .

(a) Draw the transition graph for this Markov chain. [4]

(b) If it is sunny on a given day, then what is the probability that it is rainy two days
later? [6]

(c) (i) For a general Markov chain with transition matrix P , define what it means
for a probability distribution on state space S to be an equilibrium
distribution. [3]

(ii) For a general Markov chain with transition matrix P , define what it means
for a probability distribution on state space S to be a limiting
distribution. [3]

(d) (i) Explain why the transition matrix is regular. [3]

(ii) Determine the limiting probability distribution. [5]
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Question 3 [20 marks]. This question is about a gambler. The gambler starts
with an initial fortune of £2. He gambles once per day until he quits. He quits when
either he loses all his money or he increases his fortune to £4. On a day when he has
£j, where j ∈ {1, 2, 3}, he gambles on the outcome of a game, and wins £1 with
probability (4− j)/10, but loses £1 with probability (6 + j)/10.

(a) The gambler’s changing fortune can be modelled as a Markov chain with five
states. Define the five states and say to what situations they correspond. [4]

(b) Draw a transition graph for this Markov chain. [5]

(c) Write down a transition matrix for the Markov chain. (Indicate clearly which
rows of the matrix correspond to which states.) [4]

(d) Using first-step analysis, or otherwise, find the expected number of gambles the
gambler makes until he quits. Show your working. [7]

Question 4 [18 marks].

(a) State the Thinning Lemma for Poisson processes. [4]

Parts (b)-(e) of this question are about a bus stop at which buses arrive according to a
Poisson process of rate 6 per hour. Your answers to the following questions should be
expressed in powers of e (where appropriate), but they should be simplified in all other
ways.

(b) What is the probability that two buses arrive between 8:00 am and 8:30 am? [3]

(c) Given that no bus arrives between 8:00 am and 8:30 am, what is the probability
that at least two buses arrive between 8:30 am and 9:00 am? [3]

(d) Each bus which arrives at the bus stop is ‘out of service’ with probability 1/4,
independently of all the other buses. What is the probability that at least two ‘in
service’ buses arrive between 9:00 am and 11:00 am? [4]

(e) Determine the expected arrival time of the second bus to arrive after 8:00 am. [4]
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Question 5 [25 marks]. A continuous time Markov chain X(t) on state space
S = {1, 2, 3} has the following generator matrix:−0.3 0.2 0.1

0.1 −0.5 0.4

0.3 0.1 −0.4

 .

Initially, X(0) = 1.

(a) Draw a transition graph for this random process. [4]

(b) State Kolmogorov’s forward equations for d
dt
p1,1(t),

d
dt
p1,2(t) and d

dt
p1,3(t). [5]

(c) Calculate the probability that the process remains in state 1 throughout the
period 0 ≤ t ≤ 2. Your answer should be expressed in powers of e (if appropriate),
but should be simplified in all other ways. [5]

(d) Determine the probability that the second jump of the process is into state 1. [6]

(e) Write down the equations satisfied by the limiting distribution of this continuous
time Markov chain. You do not need to solve them. [5]

End of Paper.

c© Queen Mary University of London (2020)


